2 resultados para HEAD-TO-TAIL CYCLIZATION
em Digital Commons - Michigan Tech
Resumo:
Bidirectional promoters regulate adjacent genes organized in a divergent fashion (head to head orientation). Several Reports pertaining to bidirectional promoters on a genomic scale exists in mammals. This work provides the essential background on theoretical and experimental work to carry out a genomic scale analysis of bidirectional promoters in plants. A computational study was performed to identify putative bidirectional promoters and the over-represented cis-regulatory motifs from three sequenced plant genomes: rice (Oryza sativa), Arabidopsis thaliana, and Populus trichocarpa using the Plant Cis-acting Regulatory DNA Elements (PLACE) and PLANT CARE databases. Over-represented motifs along with their possible function were described with the help of a few conserved representative putative bidirectional promoters from the three model plants. By doing so a foundation was laid for the experimental evaluation of bidirectional promoters in plants. A novel Agrobacterium tumefaciens mediated transient expression assay (AmTEA) was developed for young plants of different cereal species and the model dicot Arabidopsis thaliana. AmTEA was evaluated using five promoters (six constructs) and two reporter genes, gus and egfp. Efficacy and stability of AmTEA was compared with stable transgenics using the Arabidopsis DEAD-box RNA helicase family gene promoter. AmTEA was primarily developed to overcome the many problems associated with the development of transgenics and expression studies in plants. Finally a possible mechanism for the bidirectional activity of bidirectional promoters was highlighted. Deletion analysis using promoter-reporter gene constructs identified three rice promoters to be bidirectional. Regulatory elements located in the 5’- untranslated regions (UTR) of one of the genes of the divergent gene pair were found to be responsible for their bidirectional ctivity
Resumo:
Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs. Earlier studies have related head kinematics (linear and angular accelerations) to TBIs. However, fewer studies have dealt with brain kinetics (impact pressures and stresses) occurring during head-on collisions. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests were conducted for linear impact accelerations and the Head Impact Contact Pressures (HICP) calculated from them were applied to a validated FE model. The results showed lateral region of the head as the most vulnerable region to damage from any drop height or impact distance followed by posterior region. The TBI tolerance levels in terms of Von-Mises and Maximum Principal Stresses deduced for lateral impact were 30 MPa and 18 MPa respectively. These levels were corresponding to 2.625 feet drop height. The drop heights beyond this value will result in TBI causing stress concentrations in human head without any detectable structural damage to the brain tissue. This data can be utilized for designing helmets that provide cushioning to brain along with providing a resistance to shear.