2 resultados para HALO

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of the mixture, producing an inhomogeneous result. Studying this process in real clouds involves the use of airborne optical instruments capable of measuring clouds at the `single particle' level. Single particle resolution allows for direct measurement of the droplet size distribution. This is in contrast to other `bulk' methods (i.e. hot-wire probes, lidar, radar) which measure a higher order moment of the distribution and require assumptions about the distribution shape to compute a size distribution. The sampling strategy of current optical instruments requires them to integrate over a path tens to hundreds of meters to form a single size distribution. This is much larger than typical mixing scales (which can extend down to the order of centimeters), resulting in difficulties resolving mixing signatures. The Holodec is an optical particle instrument that uses digital holography to record discrete, local volumes of droplets. This method allows for statistically significant size distributions to be calculated for centimeter scale volumes, allowing for full resolution at the scales important to the mixing process. The hologram also records the three dimensional position of all particles within the volume, allowing for the spatial structure of the cloud volume to be studied. Both of these features represent a new and unique view into the mixing problem. In this dissertation, holographic data recorded during two different field projects is analyzed to study the mixing structure of cumulus clouds. Using Holodec data, it is shown that mixing at cloud top can produce regions of clear but humid air that can subside down along the edge of the cloud as a narrow shell, or advect down shear as a `humid halo'. This air is then entrained into the cloud at lower levels, producing mixing that appears to be very inhomogeneous. This inhomogeneous-like mixing is shown to be well correlated with regions containing elevated concentrations of large droplets. This is used to argue in favor of the hypothesis that dilution can lead to enhanced droplet growth rates. I also make observations on the microscale spatial structure of observed cloud volumes recorded by the Holodec.