10 resultados para Gregoire, Timothy G.: Sampling methods for multiresource forest inventory
em Digital Commons - Michigan Tech
Resumo:
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Resumo:
Proteins are linear chain molecules made out of amino acids. Only when they fold to their native states, they become functional. This dissertation aims to model the solvent (environment) effect and to develop & implement enhanced sampling methods that enable a reliable study of the protein folding problem in silico. We have developed an enhanced solvation model based on the solution to the Poisson-Boltzmann equation in order to describe the solvent effect. Following the quantum mechanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy into three physical terms– Polarization, Dispersion and Cavitation. All the terms were implemented, analyzed and parametrized individually to obtain a high level of accuracy. In order to describe the thermodynamics of proteins, their conformational space needs to be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to their rugged free-energy landscape, with the barriers between minima being higher than the thermal energy at physiological temperatures. In order to overcome this problem a number of approaches have been proposed of which replica exchange method (REM) is the most popular. In this dissertation we describe a new variant of canonical replica exchange method in the context of molecular dynamic simulation. The advantage of this new method is the easily tunable high acceptance rate for the replica exchange. We call our method Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the theoretical frame work, comment on its actual implementation, and its application to Trp-cage mini-protein in implicit solvent. We have been able to correctly predict the folding thermodynamics of this protein using our approach.
Resumo:
Peatlands cover only ~3% of the global land area, but store ~30% of the worlds' soil carbon. There are many different peat types that store different amounts of carbon. Most inventories of carbon storage in northern peatlands have been conducted in the expansive Sphagnum dominated peatlands. Although, northern white cedar peatlands (NW cedar, Thuja occidentalis L.) are also one of the most common peatland types in the Great Lakes Region, occupying more than 2 million hectares. NW cedar swamps are understudied, due in part to the difficulties in collection methods. General lack of rapid and consistent sampling methods has also contributed in a lack of carbon stock quantification for many peatlands. The main objective of this thesis is to quantify: 1) to evaluate peat sampling methods 2) the amount of C-stored and the rates of long-term carbon accumulation in NW cedar peatlands. We sampled 38 peatlands separated into four categories (black ash, NW cedar swamp, sedge, and Sphagnum) during the summers of 2011/2012 across northern MN and the Upper Peninsula of MI. Basal dates of peat indicate that cedar peatlands were between 1970-7790 years old. Cedar peatlands are generally shallower than Sphagnum peat, but due to their higher bulk density, hold similar amounts of carbon with our sites averaging ~800 MgC ha-1. We estimate that NW cedar peatlands store over 1.7 Gt of carbon in the Great Lakes Region. Each of the six methods evaluated had a different level of accuracy and requires varying levels of effort and resources. The depth only method and intermittent sampling method were the most accurate methods of peatland sampling.
Resumo:
Direct sampling methods are increasingly being used to solve the inverse medium scattering problem to estimate the shape of the scattering object. A simple direct method using one incident wave and multiple measurements was proposed by Ito, Jin and Zou. In this report, we performed some analytic and numerical studies of the direct sampling method. The method was found to be effective in general. However, there are a few exceptions exposed in the investigation. Analytic solutions in different situations were studied to verify the viability of the method while numerical tests were used to validate the effectiveness of the method.
Resumo:
Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.
Resumo:
The amount and type of ground cover is an important characteristic to measure when collecting soil disturbance monitoring data after a timber harvest. Estimates of ground cover and bare soil can be used for tracking changes in invasive species, plant growth and regeneration, woody debris loadings, and the risk of surface water runoff and soil erosion. A new method of assessing ground cover and soil disturbance was recently published by the U.S. Forest Service, the Forest Soil Disturbance Monitoring Protocol (FSDMP). This protocol uses the frequency of cover types in small circular (15cm) plots to compare ground surface in pre- and post-harvest condition. While both frequency and percent cover are common methods of describing vegetation, frequency has rarely been used to measure ground surface cover. In this study, three methods for assessing ground cover percent (step-point, 15cm dia. circular and 1x5m visual plot estimates) were compared to the FSDMP frequency method. Results show that the FSDMP method provides significantly higher estimates of ground surface condition for most soil cover types, except coarse wood. The three cover methods had similar estimates for most cover values. The FSDMP method also produced the highest value when bare soil estimates were used to model erosion risk. In a person-hour analysis, estimating ground cover percent in 15cm dia. plots required the least sampling time, and provided standard errors similar to the other cover estimates even at low sampling intensities (n=18). If ground cover estimates are desired in soil monitoring, then a small plot size (15cm dia. circle), or a step-point method can provide a more accurate estimate in less time than the current FSDMP method.
Resumo:
Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.
Resumo:
We used active remote sensing technology to characterize forest structure in a northern temperate forest on a landscape- and local-level in the Upper Peninsula of Michigan. Specifically, we used a form of active remote sensing called light detection and ranging (e.g., LiDAR) to aid in the depiction of current forest structural stages and total canopy gap area estimation. On a landscape-level, LiDAR data are shown not only to be a useful tool in characterizing forest structure, in both coniferous and deciduous forest cover types, but also as an effective basis for data-driven surrogates for classification of forest structure. On a local-level, LiDAR data are shown to be a benchmark reference point to evaluate field-based canopy gap area estimations, due to the highly accurate nature of such remotely sensed data. The application of LiDAR remote sensed data can help facilitate current and future sustainable forest management.
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.