5 resultados para Globe céleste

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forested wetlands throughout the world are valuable habitats; especially in relatively species-poor northern regions, they can be considered biological hotspots. Unfortunately, these areas have been degraded and destroyed. In recent years, however, the biological importance of wetlands has been increasingly recognized, resulting in the desire to restore disturbed habitats or create in place of destroyed ones. Restoration work is taking place across the globe in a diversity of wetland types, and research must be conducted to determine successful techniques. As a result, two studies of the effects of wetland restoration and creation were conducted in forested wetlands in northern Michigan and southern Finland. In North America, northern white-cedar wetlands have been declining in area, despite attempts to regenerate them. Improved methods for successfully establishing northern white-cedar are needed; as a result, the target of the first study was to determine if creating microtopography could be beneficial for white-cedar recruitment and growth. In northern Europe, spruce swamp forests have become a threatened ecosystem due to extensive drainage for forestry. As part of the restoration of these habitats, i.e. rewetting through ditch blocking, Sphagnum mosses are considered to be a critical element to re-establish, and an in-depth analysis of how Sphagnum is responding to restoration in spruce swamp forests has not been previously done. As a result, the aim of the second study was to investigate the ecophysiological functioning of Sphagnum and feather mosses across a gradient of pristine, drained, and restored boreal spruce swamp forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of two active volcanoes in the western branch of the East African Rift, Nyamuragira (1.408ºS, 29.20ºE; 3058 m) is located in the D.R. Congo. Nyamuragira emits large amounts of SO2 (up to ~1 Mt/day) and erupts low-silica, alkalic lavas, which achieve flow rates of up to ~20 km/hr. The source of the large SO2 emissions and pre-eruptive magma conditions were unknown prior to this study, and 1994-2010 lava volumes were only recently mapped via satellite imagery, mainly due to the region’s political instability. In this study, new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic Nyamuragira eruptions (1912, 1938, 1948, 1986, 2006) are presented. Melt compositions derived from the 1986 and 2006 tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. The total amount of SO2 released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) eruptions are derived using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ~1 Mt; 2006 = ~2 Mt). Potential explanations for this observation are: 1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or 2) syn-eruptive gas release from unerupted magma. Post-1994 Nyamuragira lava volumes were not available at the beginning of this study. These flows (along with others since 1967) are mapped with Landsat MSS, TM, and ETM+, Hyperion, and ALI satellite data and combined with published flow thicknesses to derive volumes. Satellite remote sensing data was also used to evaluate Nyamuragira SO2 emissions. These results show that the most recent Nyamuragira eruptions injected SO2 into the atmosphere between 15 km (2006 eruption) and 5 km (2010 eruption). This suggests that past effusive basaltic eruptions (e.g., Laki 1783) are capable of similar plume heights that reached the upper troposphere or tropopause, allowing SO2 and resultant aerosols to remain longer in the atmosphere, travel farther around the globe, and affect global climates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. A first attempt to quantitatively validate AIRS SO2 retrievals with OMI data revealed a good correlation for high altitude SO2 clouds. Using estimates of the emitted SO2 at the time each paroxysm, we observe a correlation with the inter-paroxysm repose time. We therefore suggest that our data set supports the collapsing foam (CF) model [1] as driving mechanism for the paroxysmal events at the NSEC. Using VOLDORAD-based estimates of the erupted magma mass, we observe a large excess of SO2 in the eruption clouds. Satellite measurements indicate that SO2 emissions from Etnean lava fountains can reach the lower stratosphere and hence could pose a hazard to aviation. [1] Parfitt E.A (2004). A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134, 77-107.