3 resultados para Geological extrapolation

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fieldwork is supportive of students’ natural inquiry abilities. Educational research findings suggest that instructors can foster the growth of thinking skills and promote science literacy by incorporating active learning strategies (McConnel et al, 2003). Huntoon (2001) states that there is a need to determine optimal learning strategies and to document the procedure of assessing those optimal geoscience curricula. This study seeks to determine if Earth Space II, a high school geological field course, can increase students’ knowledge of selected educational objectives. This research also seeks to measure any impact Earth Space II has on students’ attitude towards science. Assessment of the Earth Space II course objectives provided data on the impact of field courses on high school students’ scientific literacy, scientific inquiry skills, and understanding of selected course objectives. Knowledge assessment was done using a multiple choice format test, the Geoscience Concept Inventory, and an open-ended format essay test. Attitude assessment occurred by utilizing a preexisting science attitude survey. Both knowledge assessments items showed a positive effect size from the pretest to the posttest. The essay exam effect size was 17 and the Geoscience Concept Inventory effect size was 0.18. A positive impact on students’ attitude toward science was observed by an increase in the overall mean Likert value from the pre-survey to the post-survey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Collingwood Member is a mid to late Ordovician self-sourced reservoir deposited across the northern Michigan Basin and parts of Ontario, Canada. Although it had been previously studied in Canada, there has been relatively little data available from the Michigan subsurface. Recent commercial interest in the Collingwood has resulted in the drilling and production of several wells in the state of Michigan. An analysis of core samples, measured laboratory data, and petrophysical logs has yielded both a quantitative and qualitative understanding of the formation in the Michigan Basin. The Collingwood is a low permeability and low porosity carbonate package that is very high in organic content. It is composed primarily of a uniformly fine grained carbonate matrix with lesser amounts of kerogen, silica, and clays. The kerogen content of the Collingwood is finely dispersed in the clay and carbonate mineral phases. Geochemical and production data show that both oil and gas phases are present based on regional thermal maturity. The deposit is richest in the north-central part of the basin with thickest deposition and highest organic content. The Collingwood is a fairly thin deposit and vertical fractures may very easily extend into the surrounding formations. Completion and treatment techniques should be designed around these parameters to enhance production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.