5 resultados para Gaussian and t-copulas
em Digital Commons - Michigan Tech
Resumo:
Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.
Resumo:
All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions.
Resumo:
Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.
Resumo:
Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.
Resumo:
The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.