5 resultados para Gaussian Probability Distribution

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several deterministic and probabilistic methods are used to evaluate the probability of seismically induced liquefaction of a soil. The probabilistic models usually possess some uncertainty in that model and uncertainties in the parameters used to develop that model. These model uncertainties vary from one statistical model to another. Most of the model uncertainties are epistemic, and can be addressed through appropriate knowledge of the statistical model. One such epistemic model uncertainty in evaluating liquefaction potential using a probabilistic model such as logistic regression is sampling bias. Sampling bias is the difference between the class distribution in the sample used for developing the statistical model and the true population distribution of liquefaction and non-liquefaction instances. Recent studies have shown that sampling bias can significantly affect the predicted probability using a statistical model. To address this epistemic uncertainty, a new approach was developed for evaluating the probability of seismically-induced soil liquefaction, in which a logistic regression model in combination with Hosmer-Lemeshow statistic was used. This approach was used to estimate the population (true) distribution of liquefaction to non-liquefaction instances of standard penetration test (SPT) and cone penetration test (CPT) based most updated case histories. Apart from this, other model uncertainties such as distribution of explanatory variables and significance of explanatory variables were also addressed using KS test and Wald statistic respectively. Moreover, based on estimated population distribution, logistic regression equations were proposed to calculate the probability of liquefaction for both SPT and CPT based case history. Additionally, the proposed probability curves were compared with existing probability curves based on SPT and CPT case histories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report discusses the calculation of analytic second-order bias techniques for the maximum likelihood estimates (for short, MLEs) of the unknown parameters of the distribution in quality and reliability analysis. It is well-known that the MLEs are widely used to estimate the unknown parameters of the probability distributions due to their various desirable properties; for example, the MLEs are asymptotically unbiased, consistent, and asymptotically normal. However, many of these properties depend on an extremely large sample sizes. Those properties, such as unbiasedness, may not be valid for small or even moderate sample sizes, which are more practical in real data applications. Therefore, some bias-corrected techniques for the MLEs are desired in practice, especially when the sample size is small. Two commonly used popular techniques to reduce the bias of the MLEs, are ‘preventive’ and ‘corrective’ approaches. They both can reduce the bias of the MLEs to order O(n−2), whereas the ‘preventive’ approach does not have an explicit closed form expression. Consequently, we mainly focus on the ‘corrective’ approach in this report. To illustrate the importance of the bias-correction in practice, we apply the bias-corrected method to two popular lifetime distributions: the inverse Lindley distribution and the weighted Lindley distribution. Numerical studies based on the two distributions show that the considered bias-corrected technique is highly recommended over other commonly used estimators without bias-correction. Therefore, special attention should be paid when we estimate the unknown parameters of the probability distributions under the scenario in which the sample size is small or moderate.