2 resultados para GRAPHITE SURFACE

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes obtained from high critical density treatment (low temperature and high pressure) are more stable due to more negative charges of zeta potential, but have smaller sizes than those from low critical density (high temperature and low pressure). However, when an additional 1-hour sonication is applied, the size of the flakes from low critical density treatment becomes smaller than those from high critical density treatment. This is probably due to more CO2 molecules stacked between the layers of the graphitic flakes. The zeta potentials of the sonicated samples were slightly more negative than nonsonicated samples. NMP and DMF co-solvents maintain stability and prevented reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more stable as the treatment time increases since larger flat area of graphite is exfoliated. In these experiments, the temperature has more impact on the flakes than pressure. The BET surface area resultsshow that CO2 penetrates the graphite layers more than N2. Moreover, the negative surface area of the treated graphite indicates that the CO2 molecules may be adsorbed between the graphite layers during supercritical treatment. The FE-SEM and AFM images show that the flakes have various shapes and sizes. The effects of surfactants can be observed on the FE-SEM images of the samples in one percent by weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) residue covers all of the remaining flakes. The AFM images show that the vertical thickness of the graphitic flakes can ranges from several nanometers (less than ten layers thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide treatment is a promising step compared to mechanical and chemical exfoliation techniques in the large scale production of thin graphitic flake, breaking down the graphite flakes into flakes only a fewer graphene layers thick.