4 resultados para Fuel prices

em Digital Commons - Michigan Tech


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Internal combustion engines are, and will continue to be, a primary mode of power generation for ground transportation. Challenges exist in meeting fuel consumption regulations and emission standards while upholding performance, as fuel prices rise, and resource depletion and environmental impacts are of increasing concern. Diesel engines are advantageous due to their inherent efficiency advantage over spark ignition engines; however, their NOx and soot emissions can be difficult to control and reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled providing an intrinsic link between spray and emissions, motivating detailed, fundamental studies on spray, vaporization, mixing, and combustion characteristics under engine relevant conditions. An optical combustion vessel facility has been developed at Michigan Technological University for these studies, with detailed tests and analysis being conducted. In this combustion vessel facility a preburn procedure for thermodynamic state generation is used, and validated using chemical kinetics modeling both for the MTU vessel, and institutions comprising the Engine Combustion Network international collaborative research initiative. It is shown that minor species produced are representative of modern diesel engines running exhaust gas recirculation and do not impact the autoignition of n-heptane. Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter trends agree with literature. Fluctuations in liquid length about a quasi-steady value are quantified, along with plume to plume variations. Hypotheses are developed for their causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and geometry, chamber temperature gradients, and turbulence. These are explored using a mixing limited vaporization model with an equation of state approach for thermopyhysical properties. This model is also applied to single and multi-component surrogates. Results include the development of the combustion research facility and validated thermodynamic state generation procedure. The developed equation of state approach provides application for improving surrogate fuels, both single and multi-component, in terms of diesel spray liquid length, with knowledge of only critical fuel properties. Experimental studies are coupled with modeling incorporating improved thermodynamic non-ideal gas and fuel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shippers want to improve their transportation efficiency and rail transportation has the potential to provide an economical alternative to trucking, but it also has potential drawbacks. The pressure to optimize transportation supply chain logistics has resulted in growing interest in multimodal alternatives, such as a combination of truck and rail transportation, but the comparison of multimodal and modal alternatives can be complicated. Shippers in Michigan’s Upper Peninsula (UP) face similar challenges. Adding to the challenge is the distance from major markets and the absence of available facilities for transloading activities. This study reviewed three potential locations for a transload facility (Nestoria, Ishpeming, and Amasa) where truck shipments could be transferred to rail and vice versa. These locations were evaluated on the basis of transportation costs for shippers when compared to the use of single mode transportation by truck to Wisconsin, Chicago, Minneapolis, and Sault Ste. Marie. In addition to shipping costs, the study also evaluated the potential impact of future carbon emission penalties on the shipping cost and the effects of changing fuel prices on shipping cost. The study used data obtained from TRANSEARCH database (2009) and found that although there were slight differences between percent savings for the three locations, any of them could provide potential benefits for movements to Chicago and Minneapolis, as long as final destination could be accessed by rail for delivery. Short haul movements of less than 200 miles (Wisconsin and Sault Ste. Marie) were not cost effective for multimodal transport. The study also found that for every dollar increase in fuel price, cost savings from multimodal option increased by three to five percent, but the inclusion of emission costs would only add one to two percent additional savings. Under a specific case study that addressed shipments by Northern Hardwoods, the most distant locations in Wisconsin would also provide cost savings, partially due to the possibility of using Michigan trucks with higher carrying capacity for the initial movement from the facility to transload location. In addition, Minneapolis movements were found to provide savings for Northern Hardwoods, even without final rail access.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.