5 resultados para Forest dynamics
em Digital Commons - Michigan Tech
Resumo:
The herbaceous layer is a dynamic layer in a forest ecosystem which often contains the highest species richness in northern temperate forests. Few long-term studies exist in northern hardwood forests with consistent management practices to observe herbaceous species dynamics. The Ford Forest (Michigan Technological University) reached its 50th year of management during the winter of 2008-2009. Herbaceous species were sampled during the summers pre- and post-harvest. Distinct herbaceous communities developed in the 13-cm diameter-limit treatment and the uncut control. After the harvest, the diameter-limit treatments had herbaceous communities more similar to the 13-cm diameter-limit treatment than the uncut control; the herbaceous layer contained more exotic and early successional species. Fifty years of continuous management changed the herbaceous community especially in the diameter-limit treatments. Sites used in the development of habitat classification systems based on the presence and absence of certain herbaceous species can also be used to monitor vegetation change over time. The Guide to Forest Communities and Habitat Types of Michigan was developed to aid forest managers in understanding the potential productivity of a stand, and often aid in the development of ecologically-based forest management practices. Subsets of plots used to create the Western Upper Peninsula Guide were resampled after 10 years. During the resampling, both spring and summer vegetation were sampled and earthworm populations were estimated through liquid extraction. Spring sampling observed important spring ephemerals missed during summer sampling. More exotic species were present during the summer 2010 sampling than the summer 2000 sampling. Invasive European earthworms were also observed at all sample locations in all habitat types; earthworm densities increased with increasing habitat richness. To ensure the accuracy of the guide book, plots should be monitored to see how herbaceous communities are changing. These plots also offer unique opportunities to monitor for invasive species and the effects of a changing climate.
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
Monitoring of herbaceous plants on the Ottawa National Forest (ONF) is used to understand the impact of forest management on understory composition and site conditions. In their planning, national forests are required to take into account management impacts on diversity and ecosystem health. The effect of management on understory species is dependent on various factors, including the intensity of disturbance and the biology of the plant. In the first study in this report, a population of Carex assiniboinensis, a Michigan state threatened species, was monitored for seven seasons including before logging commenced, in order to determine the sedge’s response to a single-tree selection harvest. Analyses provided insights for management of C. assiniboinensis at the stand level over the short-term. In the second study in this report, the use of the cutleaf toothwort (Cardamine concatenata) as a Management Indicator Species on the ONF was reviewed. Data were analyzed to determine the suitability of using C. concatenata to monitor impacts of forest management on site conditions. The various factors that affect understory species population dynamics illuminated the challenges of using indicator species to monitor site conditions. Insights from the study provide a greater understanding of management impacts on understory species across the Ottawa National Forest.
Resumo:
Throughout the Upper Great Lakes region, alterations to historic disturbance regimes have influenced plant community dynamics in hemlock-hardwood forests. Several important mesic forest species, eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), eastern white pine (Pinus strobus), and Canada yew (Taxus canadensis), are in decline due to exploitive logging practices used at the turn of the 20th century and the wave of intense fires that followed. Continued regeneration and recruitment failure is attributed to contemporary forest management practices and overbrowsing by white-tailed deer (Odocoileus virginianus). Therefore, I examined the influence of two concurrent disturbances, overstory removal and herbivory, on plant community dynamics in two hemlock-hardwood forests. I measured the post-disturbance regeneration response (herbaceous and woody species) inside and outside of deer exclosures in 20 artificial canopy gaps (50 – 450 m2) and monitored survival and growth for hundreds of planted seedlings. The results of this research show that interacting disturbances can play a large role in shaping plant community composition and structure in hemlock-hardwood forests. White-tailed deer herbivory homogenized the post-disturbance plant communities across the experimental gradient of gap areas, essentially making species compositions in small gaps “look like” those in large gaps. Deer browsing also influenced probability of survival for planted Canada yew cuttings; all else being equal an individual was nearly seven times more likely to survive if protected from herbivory (P < 0.001). In contrast, the ability of sugar maple (Acer saccharum) to persist under high levels of herbivory and respond rapidly to overstory release appears to be related to the presence of stem layering(i.e., portions of below-ground prostrate stem). Layering occurred in 52% of excavated saplings (n = 100) and was significantly associated with increased post-disturbance height growth. Understory light was also important to planted seedling establishment and height growth. Higher levels of direct under-canopy light negatively impacted survival for shade-tolerant hemlock and Canada yew, while an increase in diffuse light was linked to a higher probability of survival for yellow birch and height growth for hemlock and Canada yew. Increases in white pine height growth were also significantly associated with a decrease in canopy cover.
Resumo:
Our research explored the influence of deer and gap size on nitrogen cycling, soil compaction, and vegetation trajectories in twelve canopy gaps of varying sizes in a hemlock-northern hardwood forest. Each gap contained two fenced and two unfenced plots. Gap size, soil compaction, winter deer use, and available nitrogen were measured in 2011. Vegetation was assessed in 2007 and 2011, and non-metric multi-dimensional scaling was used to determine vegetative change. Results show that winter deer use was greater in smaller gaps. Deer accessibility did not influence compaction but did significantly increase total available nitrogen in April. April ammonium, April nitrate, and May nitrate were positively related to gap size. The relationship between gap size and vegetative community change was positive for fenced plots but unrelated for unfenced plots. In conclusion, deer are positively contributing to nitrogen dynamics and altering the relationship between canopy gap size and vegetative community change.