6 resultados para Forest Model

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape structure and heterogeneity play a potentially important, but little understood role in predator-prey interactions and behaviourally-mediated habitat selection. For example, habitat complexity may either reduce or enhance the efficiency of a predator's efforts to search, track, capture, kill and consume prey. For prey, structural heterogeneity may affect predator detection, avoidance and defense, escape tactics, and the ability to exploit refuges. This study, investigates whether and how vegetation and topographic structure influence the spatial patterns and distribution of moose (Alces alces) mortality due to predation and malnutrition at the local and landscape levels on Isle Royale National Park. 230 locations where wolves (Canis lupus) killed moose during the winters between 2002 and 2010, and 182 moose starvation death sites for the period 1996-2010, were selected from the extensive Isle Royale Wolf-Moose Project carcass database. A variety of LiDAR-derived metrics were generated and used in an algorithm model (Random Forest) to identify, characterize, and classify three-dimensional variables significant to each of the mortality classes. Furthermore, spatial models to predict and assess the likelihood at the landscape scale of moose mortality were developed. This research found that the patterns of moose mortality by predation and malnutrition across the landscape are non-random, have a high degree of spatial variability, and that both mechanisms operate in contexts of comparable physiographic and vegetation structure. Wolf winter hunting locations on Isle Royale are more likely to be a result of its prey habitat selection, although they seem to prioritize the overall areas with higher moose density in the winter. Furthermore, the findings suggest that the distribution of moose mortality by predation is habitat-specific to moose, and not to wolves. In addition, moose sex, age, and health condition also affect mortality site selection, as revealed by subtle differences between sites in vegetation heights, vegetation density, and topography. Vegetation density in particular appears to differentiate mortality locations for distinct classes of moose. The results also emphasize the significance of fine-scale landscape and habitat features when addressing predator-prey interactions. These finer scale findings would be easily missed if analyses were limited to the broader landscape scale alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.