10 resultados para Flotation. Photo-fenton. Surfactant. Produced water. Effluent

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of elevated uranium (U) in sandstone aquifers was investigated in the Upper Peninsula of Michigan, focusing on aquifers of the Jacobsville Sandstone. The hydrogeochemical controls on groundwater U concentrations were characterized using a combination of water sampling and spectral gamma-ray logging of sandstone cliffs and residential water wells. 235U/238U isotope ratios were consistent with naturally occurring U. Approximately 25% of the 270 wells tested had U concentrations above the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 30 μg/L, with elevated U generally occurring in localized clusters. Water wells were logged to determine whether groundwater U anomalies could be explained by the heterogeneous distribution of U in the sandstone. Not all wells with relative U enrichment in the sandstone produced water with U above the MCL, indicating that the effect of U enrichment in the sandstone may be modified by other hydrogeochemical factors. Well water had high redox, indicating U is in its highly soluble (VI) valence. Equilibrium modeling indicated that aqueous U is complexed with carbonates. In general, wells with elevated U concentrations had low 235U/238U activity ratios. However, in some areas U concentrations and 235U/238U activity ratios were simultaneously high, possibly indicating differences in rock-water interactions. Limited groundwater age dating suggested that residence time may also help explain variations in well water U concentrations. Low levels of U enrichment (4 to 30 ppm) in the Jacobsville sandstone may make wells in its oxidized aquifers at risk for U concentrations above the MCL. On average, U concentrations were highest in heavy mineral and clay layers and rip up conglomerates. Uranium concentrations above 4 ppm also occurred in siltstones, sandstones and conglomerates. Uranium enrichment was likely controlled by deposition processes, sorption to clays, and groundwater flow, which was controlled by permeability variations in the sandstone. Low levels of U enrichment were found at deltaic, lacustrine and alluvial fan deposits and were not isolated to specific depositional environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactants find large applications in detergents, paints, coatings, food and pharmaceutical industries. Other than that, much focused work has been carried out in oil recovery in petroleum industries and raw material extraction in mining industries. This is because of their unique structure and ability to simultaneously adhere to materials which are both structurally and physically different. The current thesis focuses on interactions of oil with different commercially available and laboratory synthesized surfactants in terms of characteristics such as foaming, ultrasound exposure and toxicity. Foaming is one important characteristic of surfactants that is widely utilized for oil recovery purposes. Researchers utilize surfactants' special ability to provide foam stability to for more efficient oil herding capability. The foam stability and foam volumes are calculated using static foam height tests. Further dispersion or oil in water emulsion formation is observed using ultrasound sources. As described earlier surfactants are not only used as foams for oil displacement, but they are also used for dispersion purposes where they are key components of dispersant formulations. During such operations, especially in sea conditions where adverse effects on aquatic life are a concern, toxicity of chemicals used becomes an important factor. Our toxicity testing experiments involves different surfactants, solvents and crude oil combinations through exposure to special light luminescent bacteria. The decrease in light intensity of the exposed bacteria is related to toxic effects of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a case study of how Mwangalala community accesses water and how that access is maintained. Mwangalala community is located in the northern tip of Karonga district in Malawi, Africa. The case study evaluates how close the community is to meeting target 10 of the Millennium Development Goals, sustainable access to safe drinking water, and evaluates the current water system through Human Centered Design’s criteria of desirability, feasibility, and viability. It also makes recommendations to improve water security in Mwangalala community. Data was collected through two years of immersive observation, interviews with 30 families, and observing two wells on three separate occasions. The 30 interviews provided a sample size of over 10% of the community’s population. Participants were initially self-selected and then invited to participate in the research. I walked along community pathways and accepted invitations to join casual conversations in family compounds. After conversing I asked the family members if they would be willing to participate in my research by talking with me about water. Data collected from the interviews and the observations of two wells were compared and analyzed for common themes. Shallow wells or open wells represented the primary water source for 93% of interview participants. Boreholes were also present in the community, but produced unpalatable water due to high concentrations of dissolved iron and were not used as primary water sources. During observations 75% of community members who used the shallow well, primarily used for consumptive uses like cooking or dinking, were females. Boreholes were primarily used for non-consumptive uses such as watering crops or bathing and 77% of the users were male. Shallow wells could remain in disrepair for two months because the repairman was a volunteer, who was not compensated for the skilled labor required to repair the wells. Community members thought the maintenance fee went towards his salary, so did not compensate the repairman when he performed work. This miscommunication provided no incentive for the repairman to make well repairs a priority, and left community members frustrated with untimely repairs. Shallow wells with functional pumps failed to provide water when the water table levels drop during dry season, forcing community members to seek secondary or tertiary water sources. Open wells, converted from shallow wells after community members did not pay for repairs to the pump, represented 44% of the wells originally installed with Mark V hand pumps. These wells whose pumps were not repaired were located in fields and one beside a church. The functional wells were all located on school grounds or in family compounds, where responsibility for the well’s maintenance is clearly defined. Mwangalala community fails to meet Millennium Development goals because the wells used by the community do not provide sustainable access to safe drinking water. Open wells, used by half the participants in the study, lack a top covering to prevent contamination from debris and wildlife. Shallow well repair times are unsustainable, taking longer than two weeks to be repaired, primarily because the repair persons are expected to provide skilled labor to repair the wells without compensation. Improving water security for Mwangalala can be achieved by improving repair times on shallow wells and making water from boreholes palatable. There are no incentives for a volunteer repair person to fix wells in a timely manner. Repair times can be improved by reducing the number of wells a repair person is responsible for and compensating the person for the skilled labor provided. Water security would be further improved by removing iron particulates from borehole water, thus rendering it palatable. This is possible through point of use filtration utilizing ceramic candles; this would make pumped water available year-round.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane filtration has become an accepted technology for the removal of pathogens from drinking water. Viruses, known to contaminate water supplies, are too small to be removed by a size-exclusion mechanism without a large energy penalty. Thus, functionalized electrospun membranes that can adsorb viruses have drawn our interest. We chose a quaternized chitosan derivative (HTCC) which carries a positively-charged quaternary amine, known to bind negatively-charged virus particles, as a functionalized membrane material. The technique of electrospinning was utilized to produce nanofiber mats with large pore diameters to increase water flux and decrease membrane fouling. In this study, stable, functionalized, electrospun HTCC-PVA nanofibers that can remove 3.6 logs (99.97%) of a model virus, porcine parvovirus (PPV), from water by adsorption and filtration have been successfully produced. This technology has the potential to purify drinking water in undeveloped countries and reduce the number of deaths due to lack of sanitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Access to improved potable water sources is recognized as one of the key factors in improving health and alleviating global poverty. In recently years, substantial investments have been made internationally in potable water infrastructure projects, allowing 2.3 billion people to gain access to potable water from 1990-2012. One such project was planned and installed in Solla, Togo, a rural village in the northern part of the country, from 2010-2012. Ethnographic studies revealed that, while the community has access to potable water, an estimated 45% of the village’s 1500 residents still rely on unprotected sources for drinking and cooking. Additionally, inequality in system use based on income level was revealed, with the higher income groups accessing the system more regularly than lower income groups. Cost, as well as the availability of cheaper sources, was identified as the main deterrent from using the new water distribution system. A new water-pricing scheme is investigated here with the intention of making the system accessible to a greater percentage of the population. Since 2012, a village-level water committee has been responsible for operations and maintenance (O&M), fulfilling the community management model that is recommended by many development theorists in order to create sustainable projects. The water committee received post-construction support, mostly in the form of technical support during system breakdowns, from the Togolese Ministry of Water and Sanitation (MWSVH). While this support has been valuable in maintaining a functional water supply system in Solla, the water committee still has managerial challenges, particularly with billing and fee collection. As a result, the water committee has only received 2% - 25% of the fees owed at each private connection and public tap stand, making their finances vulnerable when future repairs and capital replacements are necessary. A new management structure is proposed by the MWSVH that will pay utilities workers a wage and will hire an accountant in order to improve the local management and increase revenue. This proposal is analyzed under the new water pricing schemes that are presented. Initially, the rural water supply system was powered by a diesel-generator, but in 2013, a solar photo-voltaic power supply was installed. The new system proved a fiscal improvement for the village water committee, since it drastically reduced their annual O&M costs. However, the new system pumps a smaller volume of water on a daily basis and did not meet the community’s water needs during the dry season of 2014. A hydraulic network model was developed to investigate the system’s reliability under diesel-generator (DGPS) and solar photovoltaic (PVPS) power supplies. Additionally, a new system layout is proposed for the PVPS that allows pumping directly into the distribution line, circumventing the high head associated with pumping solely to the storage tank. It was determined that this new layout would allow for a greater volume of water to be provided to the demand points over the course of a day, meeting a greater fraction of the demand than with the current layout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.