2 resultados para Film growth
em Digital Commons - Michigan Tech
Resumo:
This dissertation seeks to contribute to film, feminist and Latino/a studies by exploring the construction and ideological implications of representations of Latinas in four recent, popular U.S. films: Girlfight (Kusama 2000), Maid in Manhattan (Wang 2002), Real Women Have Curves (Cardoso 2002) and Spanglish (Brooks 2004). These films were released following a time of tremendous growth in the population and the political and economic strength of the Latina/o community as well as a rise in popularity and visibility in the 1990s of entertainers like Selena and actresses such as Jennifer Lopez and Salma Hayek. Drawing on the critical concepts of hybridity, Latinidad, and Bakhtinian dialogism, I analyze these films from a cultural and historical perspective to consider whether and to what degree, assuming changes in the situation of Latinas/os in the 1990’s, representations of Latinas have also changed. Specifically, in this dissertation I consider the ways in which the terrain of the Latina body is articulated in these films in relation to competing societal, cultural and familial conflicts, focusing on the body as a site of struggle where relationships collide, interact and are negotiated. In this dissertation I argue that most of the representations of Latinas in these films defy easy categorization, featuring complex characters grappling with economic issues, intergenerational differences, abuse, mother-daughter relationships, notions of beauty, familial expectations and the very real tensions between Latina/o cultural beliefs and practices and the dominant Anglo culture of the United States. Specifically, I argue that narrative and visual representation of Latina bodies in these films reflects a change in the Latinas offered for consumption to film viewers, presenting us with what some critics have called ‘emergent’ Latinas: conflicted and multilayered representations that in some cases challenge dominant ideologies and offer new demonstrations of Latina agency.
Resumo:
The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.