2 resultados para Feasibility analysis.
em Digital Commons - Michigan Tech
Resumo:
Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.