3 resultados para Fashion design reflective writing

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an increasingly interconnected world characterized by the accelerating interplay of cultural, linguistic, and national difference, the ability to negotiate that difference in an equitable and ethical manner is a crucial skill for both individuals and larger social groups. This dissertation, Writing Center Handbooks and Travel Guidebooks: Redesigning Instructional Texts for Multicultural, Multilingual, and Multinational Contexts, considers how instructional texts that ostensibly support the negotiation of difference (i.e., accepting and learning from difference) actually promote the management of difference (i.e., rejecting, assimilating, and erasing difference). As a corrective to this focus on managing difference, chapter two constructs a theoretical framework that facilitates the redesign of handbooks, guidebooks, and similar instructional texts. This framework centers on reflexive design practices and is informed by literacy theory (Gee; New London Group; Street), social learning theory (Wenger), globalization theory (Nederveen Pieterse), and composition theory (Canagarajah; Horner and Trimbur; Lu; Matsuda; Pratt). By implementing reflexive design practices in the redesign of instructional texts, this dissertation argues that instructional texts can promote the negotiation of difference and a multicultural/multilingual sensibility that accounts for twenty-first century linguistic and cultural realities. Informed by the theoretical framework of chapter two, chapters three and four conduct a rhetorical analysis of two forms of instructional text that are representative of the larger genre: writing center coach handbooks and travel guidebooks to Hong Kong. This rhetorical analysis reveals how both forms of text employ rhetorical strategies that uphold dominant monolingual and monocultural assumptions. Alternative rhetorical strategies are then proposed that can be used to redesign these two forms of instructional texts in a manner that aligns with multicultural and multilingual assumptions. These chapters draw on the work of scholars in Writing Center Studies (Boquet and Lerner; Carino; DiPardo; Grimm; North; Severino) and Technical Communication (Barton and Barton; Dilger; Johnson; Kimball; Slack), respectively. Chapter five explores how the redesign of coach handbooks and travel guidebooks proposed in this dissertation can be conceptualized as a political act. Ultimately, this dissertation argues that instructional texts are powerful heuristic tools that can enact social change if they are redesigned to foster the negotiation of difference and to promote multicultural/multilingual world views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of intriguing open-ended quick-write prompts within the Basotho science classroom could potentially provide a way for secondary teachers in Lesotho to have a time-efficient alternative to stimulate student thinking and increase critical thinking or application of scientific principles. Writing can be used as a powerful means to improve the achievement of students across many subject areas, including the sciences (Moore, 1993; Rivard, 1994; Rillero, Zambo, Cleland, and Ryan, 1996; Greenstein, 2013). This study focuses on the use of a non-traditional nor extensively studied writing method that could potentially support learning in science. A quasi-experimental research design, with a control and experimental group, was applied. The study was conducted at two schools, with one experimental classroom in one school and a second control group classroom in the second school for a period of 4 weeks. 51 Form B (US Grade 9 equivalent) students participated as the experimental group and 43 Form B students as the control group. In an effort to assess learning achievement, a 1 hour (35 mark) pre-test evaluation was made by and given to students by Basotho teachers at the beginning of this study to have an idea of student’s previous knowledge. Topics covered were Static Electricity, Current Electricity, Electromagnetic Waves, and Chemistry of Water. After the experimental trial period, an almost completely identical post-test evaluation was given to students in the same fashion to observe and compare gains in achievement. Test data was analyzed using an inferential statistics procedure that compared means and gains in knowledge made by the experimental and control groups. Difference between the gains of mean pre-test and post-test scores were statistically significant within each group, but were not statistically significant when the control and experimental groups were compared. Therefore, there was no clear practical effect. Qualitative data from teachers’ journals and students’ written feedback provides insight on the assessments, incorporation of the teaching method, and the development of participating students. Both mid and post-study student feedback shows that students had an overall positive and beneficial experience participating in this activity. Assessments and teacher journals showed areas of strength and weaknesses in student learning and on differences in teaching styles. They also helped support some feedback claims made by students. Areas of further research and improvement of the incorporation of this teaching method in the Basotho secondary science classroom are explored.