2 resultados para Farm forestry

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farm protest in the United States attracted widespread attention in the 1930s as militant farmers interfered with foreclosure sales, demonstrated at county court houses and state capitals, and blocked highways and stopped trains to prevent crops and livestock from going to market in an effort to raise farm prices. The best known of the protest groups was the Farmers Holiday Association, which was formed in 1932. Prior to the Holiday, however, a left-wing group organized by Communists in 1930 known as the United Farmers League (UFL) gained an initial following in the cutover country of the Upper Peninsula of Michigan, northern Wisconsin, northern Minnesota, and parts of the Dakotas and northeast Montana. Finnish Americans dominated the UFL in the Upper Midwest and in a few locales in the Dakotas. Evidence for this high level of influence comes from the fact that the head of the Communist Party’s Agrarian Department was Henry Puro, a key figure in Finnish American Communist circles and a member of the Party’s Politburo. This paper will focus on Finnish American involvement in the UFL and, to a lesser extent, the broader-based Farmers Holiday movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.