1 resultado para Excitatory Synapses
em Digital Commons - Michigan Tech
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (17)
- Aston University Research Archive (40)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (46)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (59)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (38)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (18)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (56)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Glasgow Theses Service (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (172)
- Nottingham eTheses (6)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (64)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (23)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade do Minho (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (141)
- Université de Montréal (8)
- Université de Montréal, Canada (43)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (95)
- University of Washington (1)
Resumo:
Neuromorphic computing has become an emerging field in wide range of applications. Its challenge lies in developing a brain-inspired architecture that can emulate human brain and can work for real time applications. In this report a flexible neural architecture is presented which consists of 128 X 128 SRAM crossbar memory and 128 spiking neurons. For Neuron, digital integrate and fire model is used. All components are designed in 45nm technology node. The core can be configured for certain Neuron parameters, Axon types and synapses states and are fully digitally implemented. Learning for this architecture is done offline. To train this circuit a well-known algorithm Restricted Boltzmann Machine (RBM) is used and linear classifiers are trained at the output of RBM. Finally, circuit was tested for handwritten digit recognition application. Future prospects for this architecture are also discussed.