2 resultados para Eutectic Solder
em Digital Commons - Michigan Tech
Resumo:
Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.
Resumo:
The addition of heavy rare earth (RE) elements to Nd2Fe14B based magnets to form (Nd,Dy)2Fe14B is known to increase the coercivity and high temperature performance required for hybrid vehicle electric motors and other extreme temperature applications. Attempts to conserve heavy rare earth elements for high temperature (RE)2Fe14B based magnets have led to the development of a grain boundary diffusion process for bulk magnets. This process relies on transport of a heavy rare earth, such as Dy, into a bulk Nd2Fe14B magnet along pores, a low volume fraction of eutectic liquid along grain boundary grain triple junctions and grain boundaries. This enriches the grain surfaces in Dy through the thickness of the bulk magnet, leading to larger increases coercivity with a smaller Dy concentration than can be achieved with homogeneous alloys. Attempts to carry out the same process during sintering require significant control of Dy transport efficiency. The macroscopic transport of Dy in Nd2.7Fe14B1.4 based powder packs is studied using a 'layered' pellet, where Nd2.7Fe14B1.4powder is an interlayer and Dy source as a center layer. The sintering of this layered pellet provided evidence for very large effective diffusion lengths aided by Dy rich liquid flow through connected porosity. Approaches to controlling Dy transportation include decreasing the liquid phase transport capability of the powder pack by increasing the melting point of the Dy source and the decreasing amount of RE rich liquid in the powder packs. The solid-liquid reaction is studied in which melt spun Nd2.7Fe14B1.4 ribbons are PVD coated with Dy-Fe eutectic composition and then thermally treated. The resulting microstructure from the reaction between Dy-Fe eutectic coating and Nd2.7Fe14B1.4 ribbon is interpreted as support for a proposed dissolution/reprecipitation process between solid and liquid phases. The estimate the diffusion coefficient and the effective diffusion length of Dy sources in Nd2.7Fe14B1.4 layered pellets and melt spun ribbons were obtained from the calculation of Fick's second law combined with EDS results from the experiment. The results indicate that the effective diffusion coefficient of Dy in the layered pellets is higher than the diffusion in ribbons due to its higher porosity than ribbons.