2 resultados para Eusebius, Bishop of Emesa, ca. 300-ca. 359.

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating alone). The remaining heat needed to achieve enough vapor flow to sustain thruster discharge came from a counter-wound resistive heater located behind the anode. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. Using this long-duration method, stable operation was achieved with heater powers as low as 6% of the total discharge power. Using the thermal mass flow control system the thruster operated stably enough and long enough that performance measurements could be obtained and compared to the performance of the thruster using xenon propellant. It was found that when operated with magnesium, the thruster has thrust ranging from 34 mN at 200 V to 39 mN at 300 V with 1.7 mg/s of propellant. It was found to have 27 mN of thrust at 300 V using 1.0 mg/s of propellant. The thrust-to-power ratio ranged from 24 mN/kW at 200 V to 18 mN/kW at 300 volts. The specific impulse was 2000 s at 200 V and upwards of 2700 s at 300 V. The anode efficiency was found to be ~23% using magnesium, which is substantially lower than the 40% anode efficiency of xenon at approximately equivalent molar flow rates. Measurements in the plasma plume of the thruster—operated using magnesium and xenon propellants—were obtained using a Faraday probe to measure off-axis current distribution, a retarding potential analyzer to measure ion energy, and a double Langmuir probe to measure plasma density, electron temperature, and plasma potential. Additionally, the off axis current distributions and ion energy distributions were compared to measurements made in krypton and bismuth plasmas obtained in previous studies of the same thruster. Comparisons showed that magnesium had the largest beam divergence of the four propellants while the others had similar divergence. The comparisons also showed that magnesium and krypton both had very low voltage utilization compared to xenon and bismuth. It is likely that the differences in plume structure are due to the atomic differences between the propellants; the ionization mean free path goes down with increasing atomic mass. Magnesium and krypton have long ionization mean free paths and therefore require physically larger thruster dimensions for efficient thruster operation and would benefit from magnetic shielding.