8 resultados para Estrategies of instruction
em Digital Commons - Michigan Tech
Resumo:
This study’s objective was to answer three research questions related to students’ knowledge and attitudes about water quality and availability issues. It is important to understand what knowledge students have about environmental problems such as these, because today’s students will become the problem solvers of the future. If environmental problems, such as those related to water quality, are ever going to be solved, students must be environmentally literate. Several methods of data collection were used. Surveys were given to both Bolivian and Jackson High School students in order to comparison their initial knowledge and attitudes about water quality issues. To study the effects of instruction, a unit of instruction about water quality issues was then taught to the Jackson High School students to see what impact it would have on their knowledge. In addition, the learning of two different groups of Jackson High School students was compared—one group of general education students and a second group of students that were learning in an inclusion classroom and included special education students and struggling learners form the general education population. Student and teacher journals, a unit test, and postsurvey responses were included in the data set. Results suggested that when comparing Bolivian students and Jackson High School students, Jackson High School students were more knowledgeable concerning clean water infrastructure and its importance, despite the fact that these issues were less relevant to their lives than for their Bolivian counterparts. Although overall, the data suggested that all the Jackson High students showed evidence that the instruction impacted their knowledge, the advanced Biology students appeared to show stronger gains than their peers in an inclusion classroom.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
My dissertation emphasizes a cognitive account of multimodality that explicitly integrates experiential knowledge work into the rhetorical pedagogy that informs so many composition and technical communication programs. In these disciplines, multimodality is widely conceived in terms of what Gunther Kress calls “socialsemiotic” modes of communication shaped primarily by culture. In the cognitive and neurolinguistic theories of Vittorio Gallese and George Lakoff, however, multimodality is described as a key characteristic of our bodies’ sensory-motor systems which link perception to action and action to meaning, grounding all communicative acts in knowledge shaped through body-engaged experience. I argue that this “situated” account of cognition – which closely approximates Maurice Merleau-Ponty’s phenomenology of perception, a major framework for my study – has pedagogical precedence in the mimetic pedagogy that informed ancient Sophistic rhetorical training, and I reveal that training’s multimodal dimensions through a phenomenological exegesis of the concept mimesis. Plato’s denigration of the mimetic tradition and his elevation of conceptual contemplation through reason, out of which developed the classic Cartesian separation of mind from body, resulted in a general degradation of experiential knowledge in Western education. But with the recent introduction into college classrooms of digital technologies and multimedia communication tools, renewed emphasis is being placed on the “hands-on” nature of inventive and productive praxis, necessitating a revision of methods of instruction and assessment that have traditionally privileged the acquisition of conceptual over experiential knowledge. The model of multimodality I construct from Merleau-Ponty’s phenomenology, ancient Sophistic rhetorical pedagogy, and current neuroscientific accounts of situated cognition insists on recognizing the significant role knowledges we acquire experientially play in our reading and writing, speaking and listening, discerning and designing practices.
Resumo:
After teaching regular education secondary mathematics for seven years, I accepted a position in an alternative education high school. Over the next four years, the State of Michigan adopted new graduation requirements phasing in a mandate for all students to complete Geometry and Algebra 2 courses. Since many of my students were already struggling in Algebra 1, getting them through Geometry and Algebra 2 seemed like a daunting task. To better instruct my students, I wanted to know how other teachers in similar situations were addressing the new High School Content Expectations (HSCEs) in upper level mathematics. This study examines how thoroughly alternative education teachers in Michigan are addressing the HSCEs in their courses, what approaches they have found most effective, and what issues are preventing teachers and schools from successfully implementing the HSCEs. Twenty-six alternative high school educators completed an online survey that included a variety of questions regarding school characteristics, curriculum alignment, implementation approaches and issues. Follow-up phone interviews were conducted with four of these participants. The survey responses were used to categorize schools as successful, unsuccessful, and neutral schools in terms of meeting the HSCEs. Responses from schools in each category were compared to identify common approaches and issues among them and to identify significant differences between school groups. Data analysis showed that successful schools taught more of the HSCEs through a variety of instructional approaches, with an emphasis on varying the ways students learned the material. Individualized instruction was frequently mentioned by successful schools and was strikingly absent from unsuccessful school responses. The main obstacle to successful implementation of the HSCEs identified in the study was gaps in student knowledge. This caused pace of instruction to also be a significant issue. School representatives were fairly united against the belief that the Algebra 2 graduation requirement was appropriate for all alternative education students. Possible implications of these findings are discussed.
Resumo:
The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.
Resumo:
This dissertation investigates the curricular implementation of usability instruction in technical communication. Though there are a plethora of publications and studies on usability in technical communication, little discussion focuses on usability instruction in the classroom or its implementation in the curriculum. Thus, this exploratory qualitative research seeks to contribute to a better understanding about technical communication students' and instructors' knowledge of and experiences with usability practices in the classroom, the challenges that impacted their usability efforts, and their recommendations on how their efforts could be improved. The study results demonstrate the need for more productive discussion on this issue and for developing more effective strategies for implementing usability in the classroom.
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
This study explores the effects of modeling instruction on student learning in physics. Multiple representations grounded in physical contexts were employed by students to analyze the results of inquiry lab investigations. Class whiteboard discussions geared toward a class consensus following Socratic dialogue were implemented throughout the modeling cycle. Lab investigations designed to address student preconceptions related to Newton’s Third Law were implemented. Student achievement was measured based on normalized gains on the Force Concept Inventory. Normalized FCI gains achieved by students in this study were comparable to those achieved by students of other novice modelers. Physics students who had taken a modeling Intro to Physics course scored significantly higher on the FCI posttest than those who had not. The FCI results also provided insight into deeply rooted student preconceptions related to Newton’s Third Law. Implications for instruction and the design of lab investigations related to Newton’s Third Law are discussed.