3 resultados para Equivalent Noise

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

These investigations will discuss the operational noise caused by automotive torque converters during speed ratio operation. Two specific cases of torque converter noise will be studied; cavitation, and a monotonic turbine induced noise. Cavitation occurs at or near stall, or zero turbine speed. The bubbles produced due to the extreme torques at low speed ratio operation, upon collapse, may cause a broadband noise that is unwanted by those who are occupying the vehicle as other portions of the vehicle drive train improve acoustically. Turbine induced noise, which occurs at high engine torque at around 0.5 speed ratio, is a narrow-band phenomenon that is audible to vehicle occupants currently. The solution to the turbine induced noise is known, however this study is to gain a better understanding of the mechanics behind this occurrence. The automated torque converter dynamometer test cell was utilized in these experiments to determine the effect of torque converter design parameters on the offset of cavitation and to employ the use a microwave telemetry system to directly measure pressures and structural motion on the turbine. Nearfield acoustics were used as a detection method for all phenomena while using a standardized speed ratio sweep test. Changes in filtered sound pressure levels enabled the ability to detect cavitation desinence. This, in turn, was utilized to determine the effects of various torque converter design parameters, including diameter, torus dimensions, and pump and stator blade designs on cavitation. The on turbine pressures and motion measured with the microwave telemetry were used to understand better the effects of a notched trailing edge turbine blade on the turbine induced noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used the Green's functions from auto-correlations and cross-correlations of seismic ambient noise to monitor temporal velocity changes in the subsurface at Villarrica volcano in the Southern Andes of Chile. Campaigns were conducted from March to October 2010 and February to April 2011 with 8 broadband and 6 short-period stations, respectively. We prepared the data by removing the instrument response, normalizing with a root-mean-square method, whitening the spectra, and filtering from 1 to 10 Hz. This frequency band was chosen based on the relatively high background noise level in that range. Hour-long auto- and cross-correlations were computed and the Green's functions stacked by day and total time. To track the temporal velocity changes we stretched a 24 hour moving window of correlation functions from 90% to 110% of the original and cross correlated them with the total stack. All of the stations' auto-correlations detected what is interpreted as an increase in velocity in 2010, with an average increase of 0.13%. Cross-correlations from station V01, near the summit, to the other stations show comparable changes that are also interpreted as increases in velocity. We attribute this change to the closing of cracks in the subsurface due either to seasonal snow loading or regional tectonics. In addition to the common increase in velocity across the stations, there are excursions in velocity on the same order lasting several days. Amplitude decreases as the station's distance from the vent increases suggesting these excursions may be attributed to changes within the volcanic edifice. In at least two occurrences the amplitudes at stations V06 and V07, the stations farthest from the vent, are smaller. Similar short temporal excursions were seen in the auto-correlations from 2011, however, there was little to no increase in the overall velocity.