4 resultados para Environmental valuation. Contingent valuation method. Willingness to pay. Travel cost method. Urban parks. Dunes

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was conducted in August of 2011 in the villages of Kigisu and Rubona in rural Uganda while the author was serving as a community health volunteer with the U.S. Peace Corps. The study used the contingent valuation method (CVM) to estimate the populations’ willingness to pay (WTP) for the operation and maintenance of an improved water source. The survey was administered to 122 households out of 400 in the community, gathering demographic information, health and water behaviors, and using an iterative bidding process to estimate WTP. Households indicated a mean WTP of 286 Ugandan Shillings (UGX) per 20 liters for a public tap and 202 UGX per 20 liters from a private tap. The data were also analyzed using an ordered probit model. It was determined that the number of children in the home, and the distance from the existing source were the primary variables influencing households’ WTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable management of solid waste is a global concern, as exemplified by the United Nations Millennium Development Goals (MDG) that 191 member states support. The seventh MDG indirectly advocates for municipal solid waste management (MSWM) by aiming to ensure environmental sustainability into countries’ policies and programs and reverse negative environmental impact. Proper MSWM will likely result in relieving poverty, reducing child mortality, improving maternal health, and preventing disease, which are MDG goals one, four, five, and six, respectively (UNMDG, 2005). Solid waste production is increasing worldwide as the global society strives to obtain a decent quality of life. Several means exist in which the amount of solid waste going to a landfill can be reduced, such as incineration with energy production, composting of organic wastes, and material recovery through recycling, which are all considered sustainable methods by which to manage MSW. In the developing world, composting is already a widely-accepted method to reduce waste fated for the landfill, and incineration for energy recovery can be a costly capital investment for most communities. Therefore, this research focuses on recycling as a solution to the municipal solid waste production problem while considering the three dimensions of sustainability environment, society, and economy. First, twenty-three developing country case studies were quantitatively and qualitatively examined for aspects of municipal solid waste management. The municipal solid waste (MSW) generation and recovery rates, as well as the composition were compiled and assessed. The average MSW generation rate was 0.77 kg/person/day, with recovery rates varying from 5 – 40%. The waste streams of nineteen of these case studies consisted of 0 – 70% recyclable material and 17 – 80% organic material. All twenty-three case studies were analyzed qualitatively by identifying any barriers or incentives to recycling, which justified the creation of twelve factors influencing sustainable municipal solid waste management (MSWM) in developing countries. The presence of regulations, enforcement of laws, and use of incentive schemes constitutes the first factor, Government Policy. Cost of MSWM operations, the budget allocated to MSWM by local to national governments, as well as the stability and reliability of funds comprise the Government Finances factor influencing recycling in the third world. Many case studies indicated that understanding features of a waste stream such as the generation and recovery rates and composition is the first measure in determining proper management solutions, which forms the third factor Waste Characterization. The presence and efficiency of waste collection and segregation by scavengers, municipalities, or private contractors was commonly addressed by the case studies, which justified Waste Collection and Segregation as the fourth factor. Having knowledge of MSWM and an understanding of the linkages between human behavior, waste handling, and health/sanitation/environment comprise the Household Education factor. Individuals’ income influencing waste handling behavior (e.g., reuse, recycling, and illegal dumping), presence of waste collection/disposal fees, and willingness to pay by residents were seen as one of the biggest incentives to recycling, which justified them being combined into the Household Economics factor. The MSWM Administration factor was formed following several references to the presence and effectiveness of private and/or public management of waste through collection, recovery, and disposal influencing recycling activity. Although the MSWM Personnel Education factor was only recognized by six of the twenty-two case studies, the lack of trained laborers and skilled professionals in MSWM positions was a barrier to sustainable MSWM in every case but one. The presence and effectiveness of a comprehensive, integrative, long-term MSWM strategy was highly encouraged by every case study that addressed the tenth factor, MSWM Plan. Although seemingly a subset of private MSWM administration, the existence and profitability of market systems relying on recycled-material throughput, involvement of small businesses, middlemen, and large industries/exporters is deserving of the factor Local Recycled-Material Market. Availability and effective use of technology and/or human workforce and the safety considerations of each were recurrent barriers and incentives to recycling to warrant the Technological and Human Resources factor. The Land Availability factor takes into consideration land attributes such as terrain, ownership, and development which can often times dictate MSWM. Understanding the relationships among the twelve factors influencing recycling in developing countries, made apparent the collaborative nature required of sustainable MSWM. Factors requiring the greatest collaborative inputs include waste collection and segregation, MSWM plan, and local recycled-material market. Aligning each factor to the societal, environmental, and economic dimensions of sustainability revealed the motives behind the institutions contributing to each factor. A correlation between stakeholder involvement and sustainability existed, as supported by the fact that the only three factors driven by all three dimensions of sustainability were the same three that required the greatest collaboration with other factors. With increasing urbanization, advocating for improved health for all through the MDG, and changing consumption patterns resulting in increasing and more complex waste streams, the utilization of the collaboration web offered by this research is ever needed in the developing world. Through its use, the institutions associated with each of the twelve factors can achieve a better understanding of the collaboration necessary and beneficial for more sustainable MSWM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.