4 resultados para Environmental Quality Standards

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon Monoxide (CO) and Ozone (O3) are considered to be one of the most important atmospheric pollutants in the troposphere with both having significant effects on human health. Both are included in the U.S. E.P.A list of criteria pollutants. CO is primarily emitted in the source region whereas O3 can be formed near the source, during transport of the pollution plumes containing O3 precursors or in a receptor region as the plumes subside. The long chemical lifetimes of both CO and O3 enable them to be transported over long distances. This transport is important on continental scales as well, commonly referred to as inter-continental transport and affects the concentrations of both CO and O3 in downwind receptor regions, thereby having significant implications for their air quality standards. Over the period 2001-2011, there have been decreases in the anthropogenic emissions of CO and NOx in North America and Europe whereas the emissions over Asia have increased. How these emission trends have affected concentrations at remote sites located downwind of these continents is an important question. The PICO-NARE observatory located on the Pico Mountain in Azores, Portugal is frequently impacted by North American pollution outflow (both anthropogenic and biomass burning) and is a unique site to investigate long range transport from North America. This study uses in-situ observations of CO and O3 for the period 2001-2011 at PICO-NARE coupled with output from the full chemistry (with normal and fixed anthropogenic emissions) and tagged CO simulations in GEOS-Chem, a global 3-D chemical transport model of atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office, to determine and interpret the trends in CO and O3 concentrations over the past decade. These trends would be useful in ascertaining the impacts emission reductions in the United States have had over Pico and in general over the North Atlantic. A regression model with sinusoidal functions and a linear trend term was fit to the in-situ observations and the GEOS-Chem output for CO and O3 at Pico respectively. The regression model yielded decreasing trends for CO and O3 with the observations (-0.314 ppbv/year & -0.208 ppbv/year respectively) and the full chemistry simulation with normal emissions (-0.343 ppbv/year & -0.526 ppbv/year respectively). Based on analysis of the results from the full chemistry simulation with fixed anthropogenic emissions and the tagged CO simulation it was concluded that the decreasing trends in CO were a consequence of the anthropogenic emission changes in regions such as USA and Asia. The emission reductions in USA are countered by Asian increases but the former have a greater impact resulting in decreasing trends for CO at PICO-NARE. For O3 however, it is the increase in water vapor content (which increases O3 destruction) along the pathways of transport from North America to PICO-NARE as well as around the site that has resulted in decreasing trends over this period. This decrease is offset by increase in O3 concentrations due to anthropogenic influence which could be due to increasing Asian emissions of O3 precursors as these emissions have decreased over the US. However, the anthropogenic influence does not change the final direction of the trend. It can thus be concluded that CO and O3 concentrations at PICO-NARE have decreased over 2001-2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessment of soil disturbance on the Custer National Forest was conducted during two summers to determine if the U.S. Forest Service Forest Soil Disturbance Monitoring Protocol (FSDMP) was able to distinguish post-harvest soil conditions in a chronological sequence of sites harvested using different ground-based logging systems. Results from the first year of sampling suggested that the FSDMP point sampling method may not be sensitive enough to measure post-harvest disturbance in stands with low levels of disturbance. Therefore, a revised random transect method was used during the second sampling season to determine the actual extent of soil disturbance in these cutting units. Using combined data collected from both summers I detected statistically significant differences (p < 0.05) in fine fraction bulk density measurements between FSDMP disturbance classes across all sites. Disturbance class 3 (most severe) had the highest reported bulk density, which suggest that the FSDMP visual class estimates are defined adequately allowing for correlations to be made between visual disturbance and actual soil physical characteristics. Forest site productivity can be defined by its ability to retain carbon and convert it to above- and belowground biomass. However, forest management activities that alter basic site characteristics have the potential to alter productivity. Soil compaction is one critical management impact that is important to understand; compaction has been shown to impede the root growth potential of plants, reduce water infiltration rates increasing erosion potential, and alter plant available water and nutrients, depending on soil texture. A new method to assess ground cover, erosion, and other soil disturbances was recently published by the U.S. Forest Service, as the Forest Soil Disturbance Protocol (FSDMP). The FSDMP allows soil scientists to visually assign a disturbance class estimate (0 – none, 1, 2, 3 – severe) from field measures of consistently defined soil disturbance indicators (erosion, fire, rutting, compaction, and platy/massive/puddled structure) in small circular (15 cm) plots to compare soil quality properties pre- and post- harvest condition. Using this protocol we were able to determine that ground-based timber harvesting activities occurring on the Custer National Forest are not reaching the 15% maximum threshold for detrimental soil disturbance outlined by the Region 1 Soil Quality Standards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The copper mining boom in Michigan's Upper Peninsula ended in the mid-1960s, but the historical mining still affects the region to this day. Earlier studies conducted in the Keweenaw have shown that trace metals in the sediments negatively affect benthic macroinvertebrate populations. However, because the concentrations of trace metals that are observed to be toxic often differ significantly between the laboratory and the environment, a better method for determining toxic levels of trace metals in the natural environment is desirable in order to establish surface water quality guidelines that effectively protect aquatic life. There were four research objectives for this research project. First, to determine if trace-level concentrations of copper can result in detectable ecological impacts even in the presence of high dissolved organic carbon (DOC). Second, to determine if there is a "safe" concentration of total dissolved copper below which there is little to no ecological impairment. Third, to establish which streams in the Keweenaw Peninsula have been most impacted by elevated levels of total dissolved copper. Fourth, to use this information to evaluate revisions to the water quality criterion for copper that were recently proposed by the Michigan Department of Environmental Quality (MDEQ). In order to collect water quality and macroinvertebrate data, two sampling surveys of approximately 50 streams were completed in the spring and summer of 2012. Our findings demonstrate that negative ecological impacts can be detected even in the presence of high concentrations of DOC. The majority of surveyed streams showed evidence of total dissolved copper concentrations that were elevated above background levels. Our findings suggest that there are detectable negative impacts below the current water quality standard for copper in many Keweenaw streams. The diversity of benthic macroinvertebrates and the number of species present has been reduced as a result of exposure to copper. Additionally, the multimetric approach used by MDEQ is unable to detect copper impairment in local streams due to the use of several insensitive metrics. The proposed changes to the copper criterion would increase the amount of total dissolved copper allowable despite the fact that approximately 25% of streams sampled have aquatic chemistries that would leave them vulnerable to high levels of copper ions.