6 resultados para Engineering Asset Management, Optimisation, Preventive Maintenance, Reliability Based Preventive Maintenance, Multiple Criteria Decision Making

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation investigates high performance cooperative localization in wireless environments based on multi-node time-of-arrival (TOA) and direction-of-arrival (DOA) estimations in line-of-sight (LOS) and non-LOS (NLOS) scenarios. Here, two categories of nodes are assumed: base nodes (BNs) and target nodes (TNs). BNs are equipped with antenna arrays and capable of estimating TOA (range) and DOA (angle). TNs are equipped with Omni-directional antennas and communicate with BNs to allow BNs to localize TNs; thus, the proposed localization is maintained by BNs and TNs cooperation. First, a LOS localization method is proposed, which is based on semi-distributed multi-node TOA-DOA fusion. The proposed technique is applicable to mobile ad-hoc networks (MANETs). We assume LOS is available between BNs and TNs. One BN is selected as the reference BN, and other nodes are localized in the coordinates of the reference BN. Each BN can localize TNs located in its coverage area independently. In addition, a TN might be localized by multiple BNs. High performance localization is attainable via multi-node TOA-DOA fusion. The complexity of the semi-distributed multi-node TOA-DOA fusion is low because the total computational load is distributed across all BNs. To evaluate the localization accuracy of the proposed method, we compare the proposed method with global positioning system (GPS) aided TOA (DOA) fusion, which are applicable to MANETs. The comparison criterion is the localization circular error probability (CEP). The results confirm that the proposed method is suitable for moderate scale MANETs, while GPS-aided TOA fusion is suitable for large scale MANETs. Usually, TOA and DOA of TNs are periodically estimated by BNs. Thus, Kalman filter (KF) is integrated with multi-node TOA-DOA fusion to further improve its performance. The integration of KF and multi-node TOA-DOA fusion is compared with extended-KF (EKF) when it is applied to multiple TOA-DOA estimations made by multiple BNs. The comparison depicts that it is stable (no divergence takes place) and its accuracy is slightly lower than that of the EKF, if the EKF converges. However, the EKF may diverge while the integration of KF and multi-node TOA-DOA fusion does not; thus, the reliability of the proposed method is higher. In addition, the computational complexity of the integration of KF and multi-node TOA-DOA fusion is much lower than that of EKF. In wireless environments, LOS might be obstructed. This degrades the localization reliability. Antenna arrays installed at each BN is incorporated to allow each BN to identify NLOS scenarios independently. Here, a single BN measures the phase difference across two antenna elements using a synchronized bi-receiver system, and maps it into wireless channel’s K-factor. The larger K is, the more likely the channel would be a LOS one. Next, the K-factor is incorporated to identify NLOS scenarios. The performance of this system is characterized in terms of probability of LOS and NLOS identification. The latency of the method is small. Finally, a multi-node NLOS identification and localization method is proposed to improve localization reliability. In this case, multiple BNs engage in the process of NLOS identification, shared reflectors determination and localization, and NLOS TN localization. In NLOS scenarios, when there are three or more shared reflectors, those reflectors are localized via DOA fusion, and then a TN is localized via TOA fusion based on the localization of shared reflectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic spectrum access (DSA) aims at utilizing spectral opportunities both in time and frequency domains at any given location, which arise due to variations in spectrum usage. Recently, Cognitive radios (CRs) have been proposed as a means of implementing DSA. In this work we focus on the aspect of resource management in overlaid CRNs. We formulate resource allocation strategies for cognitive radio networks (CRNs) as mathematical optimization problems. Specifically, we focus on two key problems in resource management: Sum Rate Maximization and Maximization of Number of Admitted Users. Since both the above mentioned problems are NP hard due to presence of binary assignment variables, we propose novel graph based algorithms to optimally solve these problems. Further, we analyze the impact of location awareness on network performance of CRNs by considering three cases: Full location Aware, Partial location Aware and Non location Aware. Our results clearly show that location awareness has significant impact on performance of overlaid CRNs and leads to increase in spectrum utilization effciency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.