15 resultados para Engineering Asset Management, Optimisation, Preventive Maintenance, Reliability Based Preventive Maintenance, Multiple Criteria Decision Making

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation investigates high performance cooperative localization in wireless environments based on multi-node time-of-arrival (TOA) and direction-of-arrival (DOA) estimations in line-of-sight (LOS) and non-LOS (NLOS) scenarios. Here, two categories of nodes are assumed: base nodes (BNs) and target nodes (TNs). BNs are equipped with antenna arrays and capable of estimating TOA (range) and DOA (angle). TNs are equipped with Omni-directional antennas and communicate with BNs to allow BNs to localize TNs; thus, the proposed localization is maintained by BNs and TNs cooperation. First, a LOS localization method is proposed, which is based on semi-distributed multi-node TOA-DOA fusion. The proposed technique is applicable to mobile ad-hoc networks (MANETs). We assume LOS is available between BNs and TNs. One BN is selected as the reference BN, and other nodes are localized in the coordinates of the reference BN. Each BN can localize TNs located in its coverage area independently. In addition, a TN might be localized by multiple BNs. High performance localization is attainable via multi-node TOA-DOA fusion. The complexity of the semi-distributed multi-node TOA-DOA fusion is low because the total computational load is distributed across all BNs. To evaluate the localization accuracy of the proposed method, we compare the proposed method with global positioning system (GPS) aided TOA (DOA) fusion, which are applicable to MANETs. The comparison criterion is the localization circular error probability (CEP). The results confirm that the proposed method is suitable for moderate scale MANETs, while GPS-aided TOA fusion is suitable for large scale MANETs. Usually, TOA and DOA of TNs are periodically estimated by BNs. Thus, Kalman filter (KF) is integrated with multi-node TOA-DOA fusion to further improve its performance. The integration of KF and multi-node TOA-DOA fusion is compared with extended-KF (EKF) when it is applied to multiple TOA-DOA estimations made by multiple BNs. The comparison depicts that it is stable (no divergence takes place) and its accuracy is slightly lower than that of the EKF, if the EKF converges. However, the EKF may diverge while the integration of KF and multi-node TOA-DOA fusion does not; thus, the reliability of the proposed method is higher. In addition, the computational complexity of the integration of KF and multi-node TOA-DOA fusion is much lower than that of EKF. In wireless environments, LOS might be obstructed. This degrades the localization reliability. Antenna arrays installed at each BN is incorporated to allow each BN to identify NLOS scenarios independently. Here, a single BN measures the phase difference across two antenna elements using a synchronized bi-receiver system, and maps it into wireless channel’s K-factor. The larger K is, the more likely the channel would be a LOS one. Next, the K-factor is incorporated to identify NLOS scenarios. The performance of this system is characterized in terms of probability of LOS and NLOS identification. The latency of the method is small. Finally, a multi-node NLOS identification and localization method is proposed to improve localization reliability. In this case, multiple BNs engage in the process of NLOS identification, shared reflectors determination and localization, and NLOS TN localization. In NLOS scenarios, when there are three or more shared reflectors, those reflectors are localized via DOA fusion, and then a TN is localized via TOA fusion based on the localization of shared reflectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic spectrum access (DSA) aims at utilizing spectral opportunities both in time and frequency domains at any given location, which arise due to variations in spectrum usage. Recently, Cognitive radios (CRs) have been proposed as a means of implementing DSA. In this work we focus on the aspect of resource management in overlaid CRNs. We formulate resource allocation strategies for cognitive radio networks (CRNs) as mathematical optimization problems. Specifically, we focus on two key problems in resource management: Sum Rate Maximization and Maximization of Number of Admitted Users. Since both the above mentioned problems are NP hard due to presence of binary assignment variables, we propose novel graph based algorithms to optimally solve these problems. Further, we analyze the impact of location awareness on network performance of CRNs by considering three cases: Full location Aware, Partial location Aware and Non location Aware. Our results clearly show that location awareness has significant impact on performance of overlaid CRNs and leads to increase in spectrum utilization effciency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metals price risk management is a key issue related to financial risk in metal markets because of uncertainty of commodity price fluctuation, exchange rate, interest rate changes and huge price risk either to metals’ producers or consumers. Thus, it has been taken into account by all participants in metal markets including metals’ producers, consumers, merchants, banks, investment funds, speculators, traders and so on. Managing price risk provides stable income for both metals’ producers and consumers, so it increases the chance that a firm will invest in attractive projects. The purpose of this research is to evaluate risk management strategies in the copper market. The main tools and strategies of price risk management are hedging and other derivatives such as futures contracts, swaps and options contracts. Hedging is a transaction designed to reduce or eliminate price risk. Derivatives are financial instruments, whose returns are derived from other financial instruments and they are commonly used for managing financial risks. Although derivatives have been around in some form for centuries, their growth has accelerated rapidly during the last 20 years. Nowadays, they are widely used by financial institutions, corporations, professional investors, and individuals. This project is focused on the over-the-counter (OTC) market and its products such as exotic options, particularly Asian options. The first part of the project is a description of basic derivatives and risk management strategies. In addition, this part discusses basic concepts of spot and futures (forward) markets, benefits and costs of risk management and risks and rewards of positions in the derivative markets. The second part considers valuations of commodity derivatives. In this part, the options pricing model DerivaGem is applied to Asian call and put options on London Metal Exchange (LME) copper because it is important to understand how Asian options are valued and to compare theoretical values of the options with their market observed values. Predicting future trends of copper prices is important and would be essential to manage market price risk successfully. Therefore, the third part is a discussion about econometric commodity models. Based on this literature review, the fourth part of the project reports the construction and testing of an econometric model designed to forecast the monthly average price of copper on the LME. More specifically, this part aims at showing how LME copper prices can be explained by means of a simultaneous equation structural model (two-stage least squares regression) connecting supply and demand variables. A simultaneous econometric model for the copper industry is built: {█(Q_t^D=e^((-5.0485))∙P_((t-1))^((-0.1868) )∙〖GDP〗_t^((1.7151) )∙e^((0.0158)∙〖IP〗_t ) @Q_t^S=e^((-3.0785))∙P_((t-1))^((0.5960))∙T_t^((0.1408))∙P_(OIL(t))^((-0.1559))∙〖USDI〗_t^((1.2432))∙〖LIBOR〗_((t-6))^((-0.0561))@Q_t^D=Q_t^S )┤ P_((t-1))^CU=e^((-2.5165))∙〖GDP〗_t^((2.1910))∙e^((0.0202)∙〖IP〗_t )∙T_t^((-0.1799))∙P_(OIL(t))^((0.1991))∙〖USDI〗_t^((-1.5881))∙〖LIBOR〗_((t-6))^((0.0717) Where, Q_t^D and Q_t^Sare world demand for and supply of copper at time t respectively. P(t-1) is the lagged price of copper, which is the focus of the analysis in this part. GDPt is world gross domestic product at time t, which represents aggregate economic activity. In addition, industrial production should be considered here, so the global industrial production growth that is noted as IPt is included in the model. Tt is the time variable, which is a useful proxy for technological change. A proxy variable for the cost of energy in producing copper is the price of oil at time t, which is noted as POIL(t ) . USDIt is the U.S. dollar index variable at time t, which is an important variable for explaining the copper supply and copper prices. At last, LIBOR(t-6) is the 6-month lagged 1-year London Inter bank offering rate of interest. Although, the model can be applicable for different base metals' industries, the omitted exogenous variables such as the price of substitute or a combined variable related to the price of substitutes have not been considered in this study. Based on this econometric model and using a Monte-Carlo simulation analysis, the probabilities that the monthly average copper prices in 2006 and 2007 will be greater than specific strike price of an option are defined. The final part evaluates risk management strategies including options strategies, metal swaps and simple options in relation to the simulation results. The basic options strategies such as bull spreads, bear spreads and butterfly spreads, which are created by using both call and put options in 2006 and 2007 are evaluated. Consequently, each risk management strategy in 2006 and 2007 is analyzed based on the day of data and the price prediction model. As a result, applications stemming from this project include valuing Asian options, developing a copper price prediction model, forecasting and planning, and decision making for price risk management in the copper market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due tp the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method’s error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine glass. This research has shown that glass has great potential for use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.