5 resultados para Embodied CO2 emissions

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing prices for fuel with depletion and instability in foreign oil imports has driven the importance for using alternative and renewable fuels. The alternative fuels such as ethanol, methanol, butyl alcohol, and natural gas are of interest to be used to relieve some of the dependence on oil for transportation. The renewable fuel, ethanol which is made from the sugars of corn, has been used widely in fuel for vehicles in the United States because of its unique qualities. As with any renewable fuel, ethanol has many advantages but also has disadvantages. Cold startability of engines is one area of concern when using ethanol blended fuel. This research was focused on the cold startability of snowmobiles at ambient temperatures of 20 °F, 0 °F, and -20 °F. The tests were performed in a modified 48 foot refrigerated trailer which was retrofitted for the purpose of cold-start tests. Pure gasoline (E0) was used as a baseline test. A splash blended ethanol and gasoline mixture (E15, 15% ethanol and 85% gasoline by volume) was then tested and compared to the E0 fuel. Four different types of snowmobiles were used for the testing including a Yamaha FX Nytro RTX four-stroke, Ski-doo MX Z TNT 600 E-TEC direct injected two stroke, Polaris 800 Rush semi-direct injected two-stroke, and an Arctic Cat F570 carbureted two-stroke. All of the snowmobiles operate on open loop systems which means there was no compensation for the change in fuel properties. Emissions were sampled using a Sensors Inc. Semtech DS five gas emissions analyzer and engine data was recoded using AIM Racing Data Power EVO3 Pro and EVO4 systems. The recorded raw exhaust emissions included carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (THC), and oxygen (O2). To help explain the trends in the emissions data, engine parameters were also recorded. The EVO equipment was installed on each vehicle to record the following parameters: engine speed, exhaust gas temperature, head temperature, coolant temperature, and test cell air temperature. At least three consistent tests to ensure repeatability were taken at each fuel and temperature combination so a total of 18 valid tests were taken on each snowmobile. The snowmobiles were run at operating temperature to clear any excess fuel in the engine crankcase before each cold-start test. The trends from switching from E0 to E15 were different for each snowmobile as they all employ different engine technologies. The Yamaha snowmobile (four-stroke EFI) achieved higher levels of CO2 with lower CO and THC emissions on E15. Engine speeds were fairly consistent between fuels but the average engine speeds were increased as the temperatures decreased. The average exhaust gas temperature increased from 1.3-1.8% for the E15 compared to E0 due to enleanment. For the Ski-doo snowmobile (direct injected two-stroke) only slight differences were noted when switching from E0 to E15. This could possibly be due to the lean of stoichiometric operation of the engine at idle. The CO2 emissions decreased slightly at 20 °F and 0 °F for E15 fuel with a small difference at -20 °F. Almost no change in CO or THC emissions was noted for all temperatures. The only significant difference in the engine data observed was the exhaust gas temperature which decreased with E15. The Polaris snowmobile (semi-direct injected two-stroke) had similar raw exhaust emissions for each of the two fuels. This was probably due to changing a resistor when using E15 which changed the fuel map for an ethanol mixture (E10 vs. E0). This snowmobile operates at a rich condition which caused the engine to emit higher values of CO than CO2 along with exceeding the THC analyzer range at idle. The engine parameters and emissions did not increase or decrease significantly with decreasing temperature. The average idle engine speed did increase as the ambient temperature decreased. The Arctic Cat snowmobile (carbureted two-stroke) was equipped with a choke lever to assist cold-starts. The choke was operated in the same manor for both fuels. Lower levels of CO emissions with E15 fuel were observed yet the THC emissions exceeded the analyzer range. The engine had a slightly lower speed with E15.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The feasibility of carbon sequestration in cement kiln dust (CKD) was investigated in a series of batch and column experiments conducted under ambient temperature and pressure conditions. The significance of this work is the demonstration that alkaline wastes, such as CKD, are highly reactive with carbon dioxide (CO2). In the presence of water, CKD can sequester greater than 80% of its theoretical capacity for carbon without any amendments or modifications to the waste. Other mineral carbonation technologies for carbon sequestration rely on the use of mined mineral feedstocks as the source of oxides. The mining, pre-processing and reaction conditions needed to create favorable carbonation kinetics all require significant additions of energy to the system. Therefore, their actual net reduction in CO2 is uncertain. Many suitable alkaline wastes are produced at sites that also generate significant quantities of CO2. While independently, the reduction in CO2 emissions from mineral carbonation in CKD is small (~13% of process related emissions), when this technology is applied to similar wastes of other industries, the collective net reduction in emissions may be significant. The technical investigations presented in this dissertation progress from proof of feasibility through examination of the extent of sequestration in core samples taken from an aged CKD waste pile, to more fundamental batch and microscopy studies which analyze the rates and mechanisms controlling mineral carbonation reactions in a variety of fresh CKD types. Finally, the scale of the system was increased to assess the sequestration efficiency under more pilot or field-scale conditions and to clarify the importance of particle-scale processes under more dynamic (flowing gas) conditions. A comprehensive set of material characterization methods, including thermal analysis, Xray diffraction, and X-ray fluorescence, were used to confirm extents of carbonation and to better elucidate those compositional factors controlling the reactions. The results of these studies show that the rate of carbonation in CKD is controlled by the extent of carbonation. With increased degrees of conversion, particle-scale processes such as intraparticle diffusion and CaCO3 micropore precipitation patterns begin to limit the rate and possibly the extent of the reactions. Rates may also be influenced by the nature of the oxides participating in the reaction, slowing when the free or unbound oxides are consumed and reaction conditions shift towards the consumption of less reactive Ca species. While microscale processes and composition affects appear to be important at later times, the overall degrees of carbonation observed in the wastes were significant (> 80%), a majority of which occurs within the first 2 days of reaction. Under the operational conditions applied in this study, the degree of carbonation in CKD achieved in column-scale systems was comparable to those observed under ideal batch conditions. In addition, the similarity in sequestration performance among several different CKD waste types indicates that, aside from available oxide content, no compositional factors significantly hinder the ability of the waste to sequester CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine glass. This research has shown that glass has great potential for use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.