1 resultado para Elliptic Curve
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (40)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (36)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (12)
- Helda - Digital Repository of University of Helsinki (25)
- Indian Institute of Science - Bangalore - Índia (90)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (349)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (4)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Michigan (28)
- University of Queensland eSpace - Australia (15)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
To estimate a parameter in an elliptic boundary value problem, the method of equation error chooses the value that minimizes the error in the PDE and boundary condition (the solution of the BVP having been replaced by a measurement). The estimated parameter converges to the exact value as the measured data converge to the exact value, provided Tikhonov regularization is used to control the instability inherent in the problem. The error in the estimated solution can be bounded in an appropriate quotient norm; estimates can be derived for both the underlying (infinite-dimensional) problem and a finite-element discretization that can be implemented in a practical algorithm. Numerical experiments demonstrate the efficacy and limitations of the method.