2 resultados para Electronic Commerce, Kullback-Leibler Divergence, Language Models, Review Spam, Spam Detection
em Digital Commons - Michigan Tech
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.