4 resultados para Effects-Based Approach to Operations
em Digital Commons - Michigan Tech
Resumo:
The purpose of this report is to create the foundation for further study of a market-based approach to 3D printing as an instrument for economic development in Ghana. The delivery of improved products and services to the most underserved markets is needed to spur economic activity and improve standards of living. The relationship between economic development and the advancement of technology is considered within the context of Ghana. An opportunity for market entry exists within both the bottom of the economic pyramid and the mid-segment market. 3D printing (additive manufacturing) has proven to be a disruptive technology that has demonstrated an ability to expedite the speed of innovations and create products that were previously not possible. An investigation of how 3D printers can be used to create improved products for the most underserved markets within Ghana is presented. Questions are asked to elucidate how and when adoption of 3D printers and 3D printed products may occur in the future. Based upon the existing barriers to adoption, 3D printing technology must improve before widespread adoption will occur in Ghana.
Resumo:
One of the scarcest resources in the wireless communication system is the limited frequency spectrum. Many wireless communication systems are hindered by the bandwidth limitation and are not able to provide high speed communication. However, Ultra-wideband (UWB) communication promises a high speed communication because of its very wide bandwidth of 7.5GHz (3.1GHz-10.6GHz). The unprecedented bandwidth promises many advantages for the 21st century wireless communication system. However, UWB has many hardware challenges, such as a very high speed sampling rate requirement for analog to digital conversion, channel estimation, and implementation challenges. In this thesis, a new method is proposed using compressed sensing (CS), a mathematical concept of sub-Nyquist rate sampling, to reduce the hardware complexity of the system. The method takes advantage of the unique signal structure of the UWB symbol. Also, a new digital implementation method for CS based UWB is proposed. Lastly, a comparative study is done of the CS-UWB hardware implementation methods. Simulation results show that the application of compressed sensing using the proposed method significantly reduces the number of hardware complexity compared to the conventional method of using compressed sensing based UWB receiver.
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.