5 resultados para Education through media
em Digital Commons - Michigan Tech
Resumo:
This project consists of a proposed curriculum for a semester-long, community-based workshop for LGBTQIA+ (lesbian, gay, bisexual, trans*, queer or questioning, intersex, asexual or ally, "+" indicating other identifications that deviate from heterosexual) youth ages 16-18. The workshop focuses on an exploration of LGBTQIA+ identity and community through discussion and collaborative rhetorical analysis of visual and social media. Informed by queer theory and history, studies on youth work, and visual media studies and incorporating rhetorical criticism as well as liberatory pedagogy and community literacy practices, the participation-based design of the workshop seeks to involve participants in selection of media texts, active analytical viewership, and multimodal response. The workshop is designed to engage participants in reflection on questions of individual and collective responsibility and agency as members and allies of various communities. The goal of the workshop is to strengthen participants' abilities to analyze the complex ways in which television, film, and social media influence their own and others’ perceptions of issues surrounding queer identities. As part of the reflective process, participants are challenged to consider how they can in turn actively and collaboratively respond to and potentially help to shape these perceptions. My project report details the theoretical framework, pedagogical rationale, methods of text selection and critical analysis, and guidelines for conduct that inform and structure the workshop.
Resumo:
From Bush’s September 20, 2001 “War on Terror” speech to Congress to President-Elect Barack Obama’s acceptance speech on November 4, 2008, the U.S. Army produced visual recruitment material that addressed the concerns of falling enlistment numbers—due to the prolonged and difficult war in Iraq—with quickly-evolving and compelling rhetorical appeals: from the introduction of an “Army of One” (2001) to “Army Strong” (2006); from messages focused on education and individual identity to high-energy adventure and simulated combat scenarios, distributed through everything from printed posters and music videos to first-person tactical-shooter video games. These highly polished, professional visual appeals introduced to the American public during a time of an unpopular war fought by volunteers provide rich subject matter for research and analysis. This dissertation takes a multidisciplinary approach to the visual media utilized as part of the Army’s recruitment efforts during the War on Terror, focusing on American myths—as defined by Barthes—and how these myths are both revealed and reinforced through design across media platforms. Placing each selection in its historical context, this dissertation analyzes how printed materials changed as the War on Terror continued. It examines the television ad that introduced “Army Strong” to the American public, considering how the combination of moving image, text, and music structure the message and the way we receive it. This dissertation also analyzes the video game America’s Army, focusing on how the interaction of the human player and the computer-generated player combine to enhance the persuasive qualities of the recruitment message. Each chapter discusses how the design of the particular medium facilitates engagement/interactivity of the viewer. The conclusion considers what recruitment material produced during this time period suggests about the persuasive strategies of different media and how they create distinct relationships with their spectators. It also addresses how theoretical frameworks and critical concepts used by a variety of disciplines can be combined to analyze recruitment media utilizing a Selber inspired three literacy framework (functional, critical, rhetorical) and how this framework can contribute to the multimodal classroom by allowing instructors and students to do a comparative analysis of multiple forms of visual media with similar content.
Resumo:
Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.