7 resultados para Education, Mathematics|Education, Technology of

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, the National Survey of Student Engagement (NSSE) serves as a nodal point through which to examine the power relations shaping the direction and practices of higher education in the twenty-first century. Theoretically, my analysis is informed by Foucault’s concept of governmentality, briefly defined as a technology of power that influences or shapes behavior from a distance. This form of governance operates through apparatuses of security, which include higher education. Foucault identified three essential characteristics of an apparatus—the market, the milieu, and the processes of normalization—through which administrative mechanisms and practices operate and govern populations. In this project, my primary focus is on the governance of faculty and administrators, as a population, at residential colleges and universities. I argue that the existing milieu of accountability is one dominated by the neoliberal assumption that all activity—including higher education—works best when governed by market forces alone, reducing higher education to a market-mediated private good. Under these conditions, what many in the academy believe is an essential purpose of higher education—to educate students broadly, to contribute knowledge for the public good, and to serve as society’s critic and social conscience (Washburn 227)—is being eroded. Although NSSE emerged as a form of resistance to commercial college rankings, it did not challenge the forces that empowered the rankings in the first place. Indeed, NSSE data are now being used to make institutions even more responsive to market forces. Furthermore, NSSE’s use has a normalizing effect that tends to homogenize classroom practices and erode the autonomy of faculty in the educational process. It also positions students as part of the system of surveillance. In the end, if aspects of higher education that are essential to maintaining a civil society are left to be defined solely in market terms, the result may be a less vibrant and, ultimately, a less just society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fieldwork is supportive of students’ natural inquiry abilities. Educational research findings suggest that instructors can foster the growth of thinking skills and promote science literacy by incorporating active learning strategies (McConnel et al, 2003). Huntoon (2001) states that there is a need to determine optimal learning strategies and to document the procedure of assessing those optimal geoscience curricula. This study seeks to determine if Earth Space II, a high school geological field course, can increase students’ knowledge of selected educational objectives. This research also seeks to measure any impact Earth Space II has on students’ attitude towards science. Assessment of the Earth Space II course objectives provided data on the impact of field courses on high school students’ scientific literacy, scientific inquiry skills, and understanding of selected course objectives. Knowledge assessment was done using a multiple choice format test, the Geoscience Concept Inventory, and an open-ended format essay test. Attitude assessment occurred by utilizing a preexisting science attitude survey. Both knowledge assessments items showed a positive effect size from the pretest to the posttest. The essay exam effect size was 17 and the Geoscience Concept Inventory effect size was 0.18. A positive impact on students’ attitude toward science was observed by an increase in the overall mean Likert value from the pre-survey to the post-survey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effectiveness of incorporating several new instructional strategies into an International Baccalaureate (IB) chemistry course in terms of how they supported high school seniors’ understanding of electrochemistry. The three new methods used were (a) providing opportunities for visualization of particle movement by student manipulation of physical models and interactive computer simulations, (b) explicitly addressing common misconceptions identified in the literature, and (c) teaching an algorithmic, step-wise approach for determining the products of an aqueous solution electrolysis. Changes in student understanding were assessed through test scores on both internally and externally administered exams over a two-year period. It was found that visualization practice and explicit misconception instruction improved student understanding, but the effect was more apparent in the short-term. The data suggested that instruction time spent on algorithm practice was insufficient to cause significant test score improvement. There was, however, a substantial increase in the percentage of the experimental group students who chose to answer an optional electrochemistry-related external exam question, indicating an increase in student confidence. Implications for future instruction are discussed.