2 resultados para Economic sanctions, American

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As foundational species, oaks (Quercus : Fagaceae) support the activities of both humans and wildlife. However, many oaks in North America are declining, a crisis exacerbated by the previous disappearance of other hard mast-producing trees. In addition, the economic demands placed on this drought-tolerant group may intensify if climate change extirpates other, relatively mesophytic species. Genetic tools can help address these management challenges. To this end, we developed a suite of 27 microsatellite markers, of which 22 are derived from expressed sequence tags (ESTs). Many of these markers bear significant homology to known genes and may be able to directly assay functional genetic variation. Markers obtained from enriched microsatellite libraries, on the other hand, are typically located in heterochromatic regions and should reflect demographic processes. Considered jointly, genic and genomic microsatellites can elucidate patterns of gene-flow and natural selection, which are fundamental to both an organism's evolutionary ecology and conservation biology. To this end, we employed the developed markers in an FST-based genome scan to detect the signature of divergent selection among the red oaks (Quercus section Lobatae). Three candidate genes with putative roles in stress responses demonstrated patterns of diversity consistent with adaptation to heterogeneous selective pressures. These genes may be important in both local genetic adaptation within species and divergence among them. Next, we used an isolation-with-migration model to quantify levels of gene-flow among four red oaks species during speciation. Both speciation in allopatry and speciation with gene-flow were found to be major drivers of red oak biodiversity. Loci playing a key role in speciation are also likely to be ecologically important within species

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardwoods comprise about half of the biomass of forestlands in North America and present many uses including economic, ecological and aesthetic functions. Forest trees rely on the genetic variation within tree populations to overcome the many biotic, abiotic, anthropogenic factors which are further worsened by climate change, that threaten their continued survival and functionality. To harness these inherent genetic variations of tree populations, informed knowledge of the genomic resources and techniques, which are currently lacking or very limited, are imperative for forest managers. The current study therefore aimed to develop genomic microsatellite markers for the leguminous tree species, honey locust, Gleditsia triacanthos L. and test their applicability in assessing genetic variation, estimation of gene flow patterns and identification of a full-sib mapping population. We also aimed to test the usefulness of already developed nuclear and gene-based microsatellite markers in delineation of species and taxonomic relationships between four of the taxonomically difficult Section Lobatae species (Quercus coccinea, Q. ellipsoidalis, Q. rubra and Q. velutina. We recorded 100% amplification of G. triacanthos genomic microsatellites developed using Illumina sequencing techniques in a panel of seven unrelated individuals with 14 of these showing high polymorphism and reproducibility. When characterized in 36 natural population samples, we recorded 20 alleles per locus with no indication for null alleles at 13 of the 14 microsatellites. This is the first report of genomic microsatellites for this species. Honey locust trees occur in fragmented populations of abandoned farmlands and pastures and is described as essentially dioecious. Pollen dispersal if the main source of gene flow within and between populations with the ability to offset the effects of random genetic drift. Factors known to influence gene include fragmentation and degree of isolation, which make the patterns gene flow in fragmented populations of honey locust a necessity for their sustainable management. In this follow-up study, we used a subset of nine of the 14 developed gSSRs to estimate gene flow and identify a full-sib mapping population in two isolated fragments of honey locust. Our analyses indicated that the majority of the seedlings (65-100% - at both strict and relaxed assignment thresholds) were sired by pollen from outside the two fragment populations. Only one selfing event was recorded confirming the functional dioeciousness of honey locust and that the seed parents are almost completely outcrossed. From the Butternut Valley, TN population, pollen donor genotypes were reconstructed and used in paternity assignment analyses to identify a relatively large full-sib family comprised of 149 individuals, proving the usefulness of isolated forest fragments in identification of full-sib families. In the Ames Plantation stand, contemporary pollen dispersal followed a fat-tailed exponential-power distribution, an indication of effective gene flow. Our estimate of δ was 4,282.28 m, suggesting that insect pollinators of honey locust disperse pollen over very long distances. The high proportion of pollen influx into our sampled population implies that our fragment population forms part of a large effectively reproducing population. The high tendency of oak species to hybridize while still maintaining their species identity make it difficult to resolve their taxonomic relationships. Oaks of the section Lobatae are famous in this regard and remain unresolved at both morphological and genetic markers. We applied 28 microsatellite markers including outlier loci with potential roles in reproductive isolation and adaptive divergence between species to natural populations of four known interfertile red oaks, Q. coccinea, Q. ellpsoidalis, Q. rubra and Q. velutina. To better resolve the taxonomic relationships in this difficult clade, we assigned individual samples to species, identified hybrids and introgressive forms and reconstructed phylogenetic relationships among the four species after exclusion of genetically intermediate individuals. Genetic assignment analyses identified four distinct species clusters, with Q. rubra most differentiated from the three other species, but also with a comparatively large number of misclassified individuals (7.14%), hybrids (7.14%) and introgressive forms (18.83%) between Q. ellipsoidalis and Q. velutina. After the exclusion of genetically intermediate individuals, Q. ellipsoidalis grouped as sister species to the largely parapatric Q. coccinea with high bootstrap support (91 %). Genetically intermediate forms in a mixed species stand were located proximate to both potential parental species, which supports recent hybridization of Q. velutina with both Q. ellipsoidalis and Q. rubra. Analyses of genome-wide patterns of interspecific differentiation can provide a better understanding of speciation processes and taxonomic relationships in this taxonomically difficult group of red oak species.