3 resultados para Earthquake-volcano interaction
em Digital Commons - Michigan Tech
Resumo:
Large earthquakes may strongly influence the activity of volcanoes through static and dynamic processes. In this study, we quantify the static and dynamic stress change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We calculated the static stress change due to the earthquake on hypothetical faults under these volcanoes with Coulomb 3.3. For the dynamic stress change, we computed synthetic seismograms to simulate the waveforms at these volcanoes. We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground velocities. The resulting values are from moderate to minor changes in stress (10-1-10-2 MPa) with the PDS values generally an order of magnitude larger than the static stress change. Although these values are small, they may be enough to trigger a response by the volcanoes, and are on the order of stress changes implicated in many other studies of volcano and earthquake triggering by large earthquakes. This study provides insight into the poorly-constrained mechanism for remote triggering.
Resumo:
Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe, in Lake Nicaragua, Nicaragua with no record of historic activity. Twenty-one samples were collected from lava flows from Maderas in 2010. Selected samples were analyzed for whole-rock geochemical data using ICP-AES and/or were dated using the 40Ar/39Ar method. The results of these analyses were combined with previously collected data from Maderas as well as field observations to determine the eruptive history of the volcano and create a geologic map. The results of the geochemical analyses indicate that Maderas is a typical Central American andesitic volcano similar to other volcanoes in Nicaragua and Costa Rica and to its nearest neighbor, Concepción volcano. It is different from Concepción in one important way – higher incompatible elements. Determined age dates range from 176.8 ± 6.1 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology of the volcano which is characterized by a bisecting graben, it is proposed that Maderas experienced two clear generations of development with three separate phases of volcanism: initial build-up of the older cone, pre-graben lava flows, and post-graben lava flows. The ages also indicate that Maderas is markedly older than Concepción which is historically active. Results were also analyzed regarding geologic hazards. The 40Ar/39Ar ages indicate that Maderas has likely been inactive for tens of thousands of years and the risk of future volcanic eruptions is low. However, earthquake, lahar and landslide hazards exist for the communities around the volcano. The steep slopes of the eroded older cone are the most likely source of landslide and lahar hazards.