4 resultados para Duluth, Missabe, and Iron Range Railway
em Digital Commons - Michigan Tech
Resumo:
In the Iron Range Strike of 1916, working-class wives picketed alongside their husbands in a conflict-ridden and dangerous setting. Mine deputies abused immigrant women on the picket lines and in their homes, with several disquieting reports receiving statewide attention in Minnesota. Many middle-class reformers in the Twin Cities grew sympathetic to the plight of northern mining families and became controversially involved the labor struggle. Some middleclass women worked alongside working-class wives and radical organizers from the Industrial Workers of the World (IWW). At the center of this gendered analysis is the cross-class cooperation between an upper-middle class woman, Lenora Austin Hamlin, a radical reformer, Elizabeth Gurley Flynn, and the story of a working-class housewife, Mikla Masonovich. This study will ask how authentic, prevalent, and unproblematic their stories of cross-class cohesive action actually were. In answering this, it will address and identify those factors that impeded women’s potential for unity. “Flash in the Pan” argues that as a result of both real and perceived differences, these networks of women remained isolated, inhibiting each from gaining sufficient power to work cohesively, and marginalizing their influence. Drawing upon a variety of sources, including media representations in newspapers, and archives of social, labor and women’s organizations, this regional study lends state-level insight into the larger gender-labor historiography.
Resumo:
Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grünberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional(1-D) multilayerd nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance(GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in predicting the equilibrium structure, stability as well as electronic and magnetic properties of one dimensional multilayered nanowires. Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilayered nanowire structures and the role of non-magnetic Pt spacer in modulating the magnetic properties of the wire. It is found that the average magnetic moment per atom in the nanowire increases monotonically with an ~1/(N(Fe)) dependance, where N(Fe) is the number of iron layers in the nanowire. A simple model based upon the interfacial structure is given to explain the 1/(N(Fe)) trend in magnetic moment obtained from the first principle calculations. A new mechanism, based upon spin flip with in the layer and multistep electron transfer between the layers, is proposed to elucidate the enhancement of magnetic moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilayered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The competition among short and long range direct exchange and the super exchange has been found to play a key role for the non-monotonous sign in IEC depending upon the width of the Platinum spacer layer. The calculated magnetoresistance from Julliere's model also exhibit similar switching behavior as that of IEC. The universality of the behavior of exchange coupling has also been looked into by introducing different non-magnetic spacers like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) configuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in Fe/Cu nanowire favors FM coupling in the 2-spacer system.
Resumo:
Iron ore concentrate pellets have the potential to fracture and abrade during transportation and handling, which produces unwanted fine particulates and dust. Consequently, pellet producers characterize the abrasion resistance of their pellets, using an Abrasion Index (AI), to indicate whether their products will produce unacceptable levels of fines. However, no one has ever investigated whether the AI correlates to pellet dustiness. During the course of this research, we investigated the relationship between AI and iron ore concentrate pellet dustiness using a wide range of industrial and laboratory pellet samples. The results showed that, in general, AI can be used to indicate high levels of dust. However, for good-quality pellets, there was no correlation between the two. Thus, dust generation from shipping and handling pellets will depend on the quantity of pellets handled and how much they are handled. These results also showed that the type of industrial furnace used to harden iron ore concentrate pellets may affect their fines generation and potential dustiness.
Resumo:
The paper will examine the role Teofilo Petriella played in splitting Italian communities through Marxist agitation. As a strike leader on Mesabi Iron Range and in Copper Country, Petriella traveled throughout the Great Lakes region. In each community he found supporters among the discontented miners, while also facing strong opposition from Catholic priests and middle class community leaders. By examining his activities in both regions, I will illustrate the connectivity of Italian communities around Lake Superior, while also addressing religious and class conflict amongst the populations.