3 resultados para Dry bubble

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to gain a quantitative understanding of land use and land cover change (LULCC) that have occurred in a rural Nicaraguan municipality by analyzing Landsat 5 Thematic Mapper (TM) images. By comparing the potential extent of tropical dry forest (TDF) with Landsat 5 TM images, this study analyzes the loss of this forest type on a local level for the municipality of San Juan de Cinco Pinos (63.5 km2) in the Department of Chinandega. Change detection analysis shows where and how land use has changed from 1985 to the present. From 1985 to 2011, nearly 15% of the TDF in San Juan de Cinco Pinos was converted to other land uses. Of the 1434.2 ha of TDF that was present in 1985, 1223.64 ha remained in 2011. The deforestation is primarily a result of agricultural expansion and fuelwood extraction. If current rates of TDF deforestation continue, the municipality faces the prospect of losing its forest cover within the next few decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate compositionally monotonous, but energetically diverse, tephra samples from Pacaya to see if fossil bubbles in pyroclasts could reflect eruptive style. Bubble size distributions (BSD) were determined for four ash to lapilli size tephra samples using an adapted version of stereology conversion by Sahagian and Proussevitch (1998). Eruptions range from very weak to very energetic. Hundreds of ESEM BSEs images were processed throughout ImageJ software for a robust and statistically correct data set of vesicles (minimum 700 bubbles per sample). Qualitative textural analysis and major element chemical compositions were also executed. There is higher vesicularity for explosive pyroclasts and an inverse correlation between bubble number density (NV) and explosivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.