5 resultados para Drag force,

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of microfluidics has increased in popularity with such fields as MEMS, microreactors, microscaleheat exchangers, etc. A comprehensive understanding of dissipation mechanisms for fluid flow in microchannels is required to accurately predict the behavior in these small systems. Tests were performed using a constant pressure potential created by two immiscible fluids juxtaposed in a microchannel. This study focused on the flow and dissipation mechanisms in round and square microchannels. There are four major dissipation mechanisms in slug flow; wall shear, dissipation at the contact line, menisci interaction and the stretching of the interface. A force balance between the internal driving potential, viscous drag and interface stretching was used to develop a model for the prediction of the velocity of a bislug in a microchannel. Interface stretching is a dissipation mechanism that has been included due to the unique system properties and becomes increasingly more important as the bislug decreases in length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how a living cell behaves has become a very important topic in today’s research field. Hence, different sensors and testing devices have been designed to test the mechanical properties of these living cells. This thesis presents a method of micro-fabricating a bio-MEMS based force sensor which is used to measure the force response of living cells. Initially, the basic concepts of MEMS have been discussed and the different micro-fabrication techniques used to manufacture various MEMS devices have been described. There have been many MEMS based devices manufactured and employed for testing many nano-materials and bio-materials. Each of the MEMS based devices described in this thesis use a novel concept of testing the specimens. The different specimens tested are nano-tubes, nano-wires, thin film membranes and biological living cells. Hence, these different devices used for material testing and cell mechanics have been explained. The micro-fabrication techniques used to fabricate this force sensor has been described and the experiments preformed to successfully characterize each step in the fabrication have been explained. The fabrication of this force sensor is based on the facilities available at Michigan Technological University. There are some interesting and uncommon concepts in MEMS which have been observed during this fabrication. These concepts in MEMS which have been observed are shown in multiple SEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing a new method of nanoindentation using the atomic force microscope (AFM) was the purpose of this research. Nanoindentation is a useful technique to study the properties of materials on the sub-micron scale. The AFM has been used as a nanoindenter previously; however several parameters needed to obtain accurate results, including tip radius and cantilever sensitivity, can be difficult to determine. To solve this problem, a new method to determine the elastic modulus of a material using the atomic force microscope (AFM) has been proposed by Tang et al. This method models the cantilever and the sample as two springs in a series. The ratio of the cantilever spring constant (k) to diameter of the tip (2a) is treated in the model as one parameter (α=k/2a). The value of a, along with the cantilever sensitivity, are determined on two reference samples with known mechanical properties and then used to find the elastic modulus of an unknown sample. To determine the reliability and accuracy of this technique, it was tested on several polymers. Traditional depth-sensing nanoindentation was preformed for comparison. The elastic modulus values from the AFM were shown to be statistically similar to the nanoindenter results for three of the five samples tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic approach to study a NVH problem is to break down the system in three basic elements – source, path and receiver. While the receiver (response) and the transfer path can be measured, it is difficult to measure the source (forces) acting on the system. It becomes necessary to predict these forces to know how they influence the responses. This requires inverting the transfer path. Singular Value Decomposition (SVD) method is used to decompose the transfer path matrix into its principle components which is required for the inversion. The usual approach to force prediction requires rejecting the small singular values obtained during SVD by setting a threshold, as these small values dominate the inverse matrix. This assumption of the threshold may be subjected to rejecting important singular values severely affecting force prediction. The new approach discussed in this report looks at the column space of the transfer path matrix which is the basis for the predicted response. The response participation is an indication of how the small singular values influence the force participation. The ability to accurately reconstruct the response vector is important to establish a confidence in force vector prediction. The goal of this report is to suggest a solution that is mathematically feasible, physically meaningful, and numerically more efficient through examples. This understanding adds new insight to the effects of current code and how to apply algorithms and understanding to new codes.