2 resultados para Dorsal premammillary nucleus and cat exposure
em Digital Commons - Michigan Tech
Resumo:
The activity of Fuego volcano during the 1999 - 2013 eruptive episode is studied through field, remote sensing and observatory records. Mapping of the deposits allows quantifying the erupted volumes and areas affected by the largest eruptions during this period. A wide range of volcanic processes results in a diversity of products and associated deposits, including minor airfall tephra, rockfall avalanches, lava flows, and pyroclastic flows. The activity can be characterized by long term, low level background activity, and sporadic larger explosive eruptions. Although the background activity erupts lava and ash at a low rate (~ 0.1 m3/s), the persistence of such activity over time results in a significant contribution (~ 30%) to the eruption budget during the studied period. Larger eruptions produced the majority of the volume of products during the studied period, mainly during three large events (May 21, 1999, June 29, 2003, and September 13, 2012), mostly in the form of pyroclastic flows. A total volume of ~ 1.4 x 108 m3 was estimated from the mapped deposits and the estimated background eruption rate. Posterior remobilization of pyroclastic flow material by stream erosion in the highly confined Barranca channels leads to lahar generation, either by normal rainfall, or by extreme rainfall events. A reassessment of the types of products and volumes erupted during the decade of 1970's allows comparing the activity happening since 1999 with the older activity, and suggests that many of the eruptive phenomena at Fuego may have similar mechanisms, despite the differences in scale between. The deposits of large pyroclastic flows erupted during the 1970's are remarkably similar in appearance to the deposit of pyroclastic flows from the 1999 - 2013 period, despite their much larger volume; this is also the case for prehistoric eruptions. Radiocarbon dating of pyroclastic flow deposits suggests that Fuego has produced large eruptions many times during the last ~ 2 ka, including larger eruptions during the last 500 years, which has important hazard implications. A survey was conducted among the local residents living near to the volcano, about their expectations of possible future crises. The results show that people are aware of the risk they could face in case of a large eruption, and therefore they are willing to evacuate in such case. However, their decision to evacuate may also be influenced by the conditions in which the evacuation could take place. If the evacuation represents a potential loss of their livelihood or property they will be more hesitant to leave their villages during a large eruption. The prospect of facing hardship conditions during the evacuation and in the shelters may further cause reluctance to evacuate. A short discussion on some of the issues regarding risk assessment and management through an early warning system is presented in the last chapter.
Resumo:
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.