5 resultados para Digital saturation recovery

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery system. It has been predicted by the U.S. Energy Information Administration that the transportation sector in the United States will consume approximately 15 million barrels per day in liquid fuels by the year 2025. The proposed coolant-based waste heat recovery technique has the potential to reduce the yearly usage of those liquid fuels by nearly 50 million barrels by only recovering even a modest 1% of the wasted energy within the coolant system. The proposed waste heat recovery technique implements thermoelectric generators on the outside cylinder walls of an internal combustion engine. For this research, one outside cylinder wall of a twin cylinder 26 horsepower water-cooled gasoline engine will be implemented with a thermoelectric generator surrogate material. The vertical location of these TEG surrogates along the water jacket will be varied along with the TEG surrogate thermal conductivity. The aim of this proposed dissertation is to attain empirical evidence of the impact, including energy distribution and cylinder wall temperatures, of installing TEGs in the water jacket area. The results can be used for future research on larger engines and will also assist with proper TEG selection to maximize energy recovery efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mower is a micro-architecture technique which targets branch misprediction penalties in superscalar processors. It speeds-up the misprediction recovery process by dynamically evicting stale instructions and fixing the RAT (Register Alias Table) using explicit branch dependency tracking. Tracking branch dependencies is accomplished by using simple bit matrices. This low-overhead technique allows overlapping of the recovery process with instruction fetching, renaming and scheduling from the correct path. Our evaluation of the mechanism indicates that it yields performance very close to ideal recovery and provides up to 5% speed-up and 2% reduction in power consumption compared to a traditional recovery mechanism using a reorder buffer and a walker. The simplicity of the mechanism should permit easy implementation of Mower in an actual processor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States transportation industry is predicted to consume approximately 13 million barrels of liquid fuel per day by 2025. If one percent of the fuel energy were salvaged through waste heat recovery, there would be a reduction of 130 thousand barrels of liquid fuel per day. This dissertation focuses on automotive waste heat recovery techniques with an emphasis on two novel techniques. The first technique investigated was a combination coolant and exhaust-based Rankine cycle system, which utilized a patented piston-in-piston engine technology. The research scope included a simulation of the maximum mass flow rate of steam (700 K and 5.5 MPa) from two heat exchangers, the potential power generation from the secondary piston steam chambers, and the resulting steam quality within the steam chamber. The secondary piston chamber provided supplemental steam power strokes during the engine's compression and exhaust strokes to reduce the pumping work of the engine. A Class-8 diesel engine, operating at 1,500 RPM at full load, had a maximum increase in the brake fuel conversion efficiency of 3.1%. The second technique investigated the implementation of thermoelectric generators on the outer cylinder walls of a liquid-cooled internal combustion engine. The research scope focused on the energy generation, fuel energy distribution, and cylinder wall temperatures. The analysis was conducted over a range of engine speeds and loads in a two cylinder, 19.4 kW, liquid-cooled, spark-ignition engine. The cylinder wall temperatures increased by 17% to 44% which correlated well to the 4.3% to 9.5% decrease in coolant heat transfer. Only 23.3% to 28.2% of the heat transfer to the coolant was transferred through the TEG and TEG surrogate material. The gross indicated work decreased by 0.4% to 1.0%. The exhaust gas energy decreased by 0.8% to 5.9%. Due to coolant contamination, the TEG output was not able to be obtained. TEG output was predicted from cylinder wall temperatures and manufacturer documentation, which was less than 0.1% of the cumulative heat release. Higher TEG conversion efficiencies, combined with greater control of heat transfer paths, would be needed to improve energy output and make this a viable waste heat recovery technique.