3 resultados para Digital Projects Workshop

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project consists of a proposed curriculum for a semester-long, community-based workshop for LGBTQIA+ (lesbian, gay, bisexual, trans*, queer or questioning, intersex, asexual or ally, "+" indicating other identifications that deviate from heterosexual) youth ages 16-18. The workshop focuses on an exploration of LGBTQIA+ identity and community through discussion and collaborative rhetorical analysis of visual and social media. Informed by queer theory and history, studies on youth work, and visual media studies and incorporating rhetorical criticism as well as liberatory pedagogy and community literacy practices, the participation-based design of the workshop seeks to involve participants in selection of media texts, active analytical viewership, and multimodal response. The workshop is designed to engage participants in reflection on questions of individual and collective responsibility and agency as members and allies of various communities. The goal of the workshop is to strengthen participants' abilities to analyze the complex ways in which television, film, and social media influence their own and others’ perceptions of issues surrounding queer identities. As part of the reflective process, participants are challenged to consider how they can in turn actively and collaboratively respond to and potentially help to shape these perceptions. My project report details the theoretical framework, pedagogical rationale, methods of text selection and critical analysis, and guidelines for conduct that inform and structure the workshop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the research in the field of participatory modeling (PM) has focused on the developed world. Few cases are focused on developing regions, and even fewer on Latin American developing countries. The work that has been done in Latin America has often involved water management, often specifically involving water users, and has not focused on the decision making stage of the policy cycle. Little work has been done to measure the effect PM may have on the perceptions and beliefs of decision makers. In fact, throughout the field of PM, very few attempts have been made to quantitatively measure changes in participant beliefs and perceptions following participation. Of the very few exceptions, none have attempted to measure the long-term change in perceptions and beliefs. This research fills that gap. As part of a participatory modeling project in Sonora, Mexico, a region with water quantity and quality problems, I measured the change in beliefs among participants about water models: ability to use and understand them, their usefulness, and their accuracy. I also measured changes in beliefs about climate change, and about water quantity problems, specifically the causes, solutions, and impacts. I also assessed participant satisfaction with the process and outputs from the participatory modeling workshops. Participants were from water agencies, academic institutions, NGOs, and independent consulting firms. Results indicated that participant comfort and self-efficacy with water models, their beliefs in the usefulness of water models, and their beliefs about the impact of water quantity problems changed significantly as a result of the workshops. I present my findings and discuss the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of the mixture, producing an inhomogeneous result. Studying this process in real clouds involves the use of airborne optical instruments capable of measuring clouds at the `single particle' level. Single particle resolution allows for direct measurement of the droplet size distribution. This is in contrast to other `bulk' methods (i.e. hot-wire probes, lidar, radar) which measure a higher order moment of the distribution and require assumptions about the distribution shape to compute a size distribution. The sampling strategy of current optical instruments requires them to integrate over a path tens to hundreds of meters to form a single size distribution. This is much larger than typical mixing scales (which can extend down to the order of centimeters), resulting in difficulties resolving mixing signatures. The Holodec is an optical particle instrument that uses digital holography to record discrete, local volumes of droplets. This method allows for statistically significant size distributions to be calculated for centimeter scale volumes, allowing for full resolution at the scales important to the mixing process. The hologram also records the three dimensional position of all particles within the volume, allowing for the spatial structure of the cloud volume to be studied. Both of these features represent a new and unique view into the mixing problem. In this dissertation, holographic data recorded during two different field projects is analyzed to study the mixing structure of cumulus clouds. Using Holodec data, it is shown that mixing at cloud top can produce regions of clear but humid air that can subside down along the edge of the cloud as a narrow shell, or advect down shear as a `humid halo'. This air is then entrained into the cloud at lower levels, producing mixing that appears to be very inhomogeneous. This inhomogeneous-like mixing is shown to be well correlated with regions containing elevated concentrations of large droplets. This is used to argue in favor of the hypothesis that dilution can lead to enhanced droplet growth rates. I also make observations on the microscale spatial structure of observed cloud volumes recorded by the Holodec.