4 resultados para Difference Equations with Maxima
em Digital Commons - Michigan Tech
Resumo:
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.
Resumo:
This work is conducted to study the geological and petrophysical features of the Trenton- Black River limestone formation. Log curves, crossplots and mineral identification methods using well-log data are used to determine the components and analyze changes in lithology. Thirty-five wells from the Michigan Basin are used to define the mineralogy of Trenton-Black River limestone. Using the different responses of a few log curves, especially gamma-ray, resistivity and neutron porosity, the formation tops for the Utica shale, the Trenton limestone, the Black River limestone and the Prairie du Chien sandstone are identified to confirm earlier authors’ work and provide a basis for my further work. From these, an isopach map showing the thickness of Trenton-Black River formation is created, indicating that its maximum thickness lies in the eastern basin and decreases gradually to the west. In order to obtain more detailed lithological information about the limestone formations at the thirty-five wells, (a) neutron-density and neutron-sonic crossplots, (b) mineral identification methods, including the M-N plot, MID plot, ϱmaa vs. Umaa MID plot, and the PEF plot, and (c) a modified mineral identification technique are applied to these wells. From this, compositions of the Trenton-Black River formation can be divided into three different rock types: pure limestone, partially dolomitized limestone, and shaly limestone. Maps showing the fraction of dolomite and shale indicate their geographic distribution, with dolomite present more in the western and southwestern basin, and shale more common in the north-central basin. Mineral identification is an independent check on the distribution found from other authors, who found similar distributions based on core descriptions. The Thomas Stieber method of analysis is best suited to sand-shale sequences, interpreting hree different distributions of shale within sand, including dispersed, laminated and structural. Since this method is commonly applied in clastic rocks, my work using the Thomas Stieber method is new, as an attempt to apply this technique, developed for clastics, to carbonate rocks. Based on the original assumption and equations with a corresponding change to the Trenton-Black River formation, feasibility of using the Thomas Stieber method in carbonates is tested. A graphical display of gamma-ray versus density porosity, using the properties of clean carbonate and pure shale, suggests the presence of laminated shale in fourteen wells in this study. Combined with Wilson’s study (2001), it is safe to conclude that when shale occurs in the Trenton-Black River formation, it tends to be laminated shale.
Resumo:
The flammability zone boundaries are very important properties to prevent explosions in the process industries. Within the boundaries, a flame or explosion can occur so it is important to understand these boundaries to prevent fires and explosions. Very little work has been reported in the literature to model the flammability zone boundaries. Two boundaries are defined and studied: the upper flammability zone boundary and the lower flammability zone boundary. Three methods are presented to predict the upper and lower flammability zone boundaries: The linear model The extended linear model, and An empirical model The linear model is a thermodynamic model that uses the upper flammability limit (UFL) and lower flammability limit (LFL) to calculate two adiabatic flame temperatures. When the proper assumptions are applied, the linear model can be reduced to the well-known equation yLOC = zyLFL for estimation of the limiting oxygen concentration. The extended linear model attempts to account for the changes in the reactions along the UFL boundary. Finally, the empirical method fits the boundaries with linear equations between the UFL or LFL and the intercept with the oxygen axis. xx Comparison of the models to experimental data of the flammability zone shows that the best model for estimating the flammability zone boundaries is the empirical method. It is shown that is fits the limiting oxygen concentration (LOC), upper oxygen limit (UOL), and the lower oxygen limit (LOL) quite well. The regression coefficient values for the fits to the LOC, UOL, and LOL are 0.672, 0.968, and 0.959, respectively. This is better than the fit of the "zyLFL" method for the LOC in which the regression coefficient’s value is 0.416.
Resumo:
Several deterministic and probabilistic methods are used to evaluate the probability of seismically induced liquefaction of a soil. The probabilistic models usually possess some uncertainty in that model and uncertainties in the parameters used to develop that model. These model uncertainties vary from one statistical model to another. Most of the model uncertainties are epistemic, and can be addressed through appropriate knowledge of the statistical model. One such epistemic model uncertainty in evaluating liquefaction potential using a probabilistic model such as logistic regression is sampling bias. Sampling bias is the difference between the class distribution in the sample used for developing the statistical model and the true population distribution of liquefaction and non-liquefaction instances. Recent studies have shown that sampling bias can significantly affect the predicted probability using a statistical model. To address this epistemic uncertainty, a new approach was developed for evaluating the probability of seismically-induced soil liquefaction, in which a logistic regression model in combination with Hosmer-Lemeshow statistic was used. This approach was used to estimate the population (true) distribution of liquefaction to non-liquefaction instances of standard penetration test (SPT) and cone penetration test (CPT) based most updated case histories. Apart from this, other model uncertainties such as distribution of explanatory variables and significance of explanatory variables were also addressed using KS test and Wald statistic respectively. Moreover, based on estimated population distribution, logistic regression equations were proposed to calculate the probability of liquefaction for both SPT and CPT based case history. Additionally, the proposed probability curves were compared with existing probability curves based on SPT and CPT case histories.