3 resultados para Design structure matrix

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within academic institutions, writing centers are uniquely situated, socially rich sites for exploring learning and literacy. I examine the work of the Michigan Tech Writing Center's UN 1002 World Cultures study teams primarily because student participants and Writing Center coaches are actively engaged in structuring their own learning and meaning-making processes. My research reveals that learning is closely linked to identity formation and leading the teams is an important component of the coaches' educational experiences. I argue that supporting this type of learning requires an expanded understanding of literacy and significant changes to how learning environments are conceptualized and developed. This ethnographic study draws on data collected from recordings and observations of one semester of team sessions, my own experiences as a team coach and UN 1002 teaching assistant, and interviews with Center coaches prior to their graduation. I argue that traditional forms of assessment and analysis emerging from individualized instruction models of learning cannot fully account for the dense configurations of social interactions identified in the Center's program. Instead, I view the Center as an open system and employ social theories of learning and literacy to uncover how the negotiation of meaning in one context influences and is influenced by structures and interactions within as well as beyond its boundaries. I focus on the program design, its enaction in practice, and how engagement in this type of writing center work influences coaches' learning trajectories. I conclude that, viewed as participation in a community of practice, the learning theory informing the program design supports identity formation —a key aspect of learning as argued by Etienne Wenger (1998). The findings of this study challenge misconceptions of peer learning both in writing centers and higher education that relegate peer tutoring to the role of support for individualized models of learning. Instead, this dissertation calls for consideration of new designs that incorporate peer learning as an integral component. Designing learning contexts that cultivate and support the formation of new identities is complex, involves a flexible and opportunistic design structure, and requires the availability of multiple forms of participation and connections across contexts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semi-active damping devices have been shown to be effective in mitigating unwanted vibrations in civil structures. These devices impart force indirectly through real-time alterations to structural properties. Simulating the complex behavior of these devices for laboratory-scale experiments is a major challenge. Commercial devices for seismic applications typically operate in the 2-10 kN range; this force is too high for small-scale testing applications where requirements typically range from 0-10 N. Several challenges must be overcome to produce damping forces at this level. In this study, a small-scale magneto-rheological (MR) damper utilizing a fluid absorbent metal foam matrix is developed and tested to accomplish this goal. This matrix allows magneto-rheological (MR) fluid to be extracted upon magnetic excitation in order to produce MR-fluid shear stresses and viscosity effects between an electromagnetic piston, the foam, and the damper housing. Dampers for uniaxial seismic excitation are traditionally positioned in the horizontal orientation allowing MR-fluid to gather in the lower part of the damper housing when partially filled. Thus, the absorbent matrix is placed in the bottom of the housing relieving the need to fill the entire device with MR-fluid, a practice that requires seals that add significant unwanted friction to the desired low-force device. The damper, once constructed, can be used in feedback control applications to reduce seismic vibrations and to test structural control algorithms and wireless command devices. To validate this device, a parametric study was performed utilizing force and acceleration measurements to characterize damper performance and controllability for this actuator. A discussion of the results is presented to demonstrate the attainment of the damper design objectives.