5 resultados para Cyclic Codes
em Digital Commons - Michigan Tech
Resumo:
Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.
Resumo:
Chapter 1 introduces the tools and mechanics necessary for this report. Basic definitions and topics of graph theory which pertain to the report and discussion of automorphic decompositions will be covered in brief detail. An automorphic decomposition D of a graph H by a graph G is a G-decomposition of H such that the intersection of graph (D) @H. H is called the automorhpic host, and G is the automorphic divisor. We seek to find classes of graphs that are automorphic divisors, specifically ones generated cyclically. Chapter 2 discusses the previous work done mainly by Beeler. It also discusses and gives in more detail examples of automorphic decompositions of graphs. Chapter 2 also discusses labelings and their direct relation to cyclic automorphic decompositions. We show basic classes of graphs, such as cycles, that are known to have certain labelings, and show that they also are automorphic divisors. In Chapter 3, we are concerned with 2-regular graphs, in particular rCm, r copies of the m-cycle. We seek to show that rCm has a ρ-labeling, and thus is an automorphic divisor for all r and m. we discuss methods including Skolem type difference sets to create cycle systems and their correlation to automorphic decompositions. In the Appendix, we give classes of graphs known to be graceful and our java code to generate ρ-labelings on rCm.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
Men and women respond to situations according to their community’s social codes. With menstruation, people adhere to “menstrual codes”. Within academic communities, people adhere to “academic codes”. This report paper investigates performances of academic codes and menstrual codes. Implications of gender identity and race are missing and/or minimal in past feminist work regarding menstruation. This paper includes considerations for gender identity and race. Within the examination of academic codes, this paper discusses the inhibitive process of idea creation within the academic sphere, and the limitations to the predominant ways of knowledge sharing within, and outside of, the academic community. The digital project (www.hu.mtu.edu/~creynolds) is one example of how academic and menstrual codes can be broken. The report and project provide a broadly accessible deconstruction of menstrual advertising and academic theories while fostering conversations on menstruation through the sharing of knowledge with others, regardless of gender, race, or academic standing.