3 resultados para Culturally Appropriate

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of fluoride naturally occurring in the ground water in the Arusha region of Tanzania cause dental, skeletal and non-skeletal fluorosis in up to 90% of the region’s population [1]. Symptoms of this incurable but completely preventable disease include brittle, discolored teeth, malformed bones and stiff and swollen joints. The consumption of high fluoride water has also been proven to cause headaches and insomnia [2] and adversely affect the development of children’s intelligence [3, 4]. Despite the fact that this array of symptoms may significantly impact a society’s development and the citizens’ ability to perform work and enjoy a reasonable quality of life, little is offered in the Arusha region in the form of solutions for the poor, those hardest hit by the problem. Multiple defluoridation technologies do exist, yet none are successfully reaching the Tanzanian public. This report takes a closer look at the efforts of one local organization, the Defluoridation Technology Project (DTP), to address the region’s fluorosis problem through the production and dissemination of bone char defluoridation filters, an appropriate technology solution that is proven to work. The goal of this research is to improve the sustainability of DTP’s operations and help them reach a wider range of clients so that they may reduce the occurrence of fluorosis more effectively. This was done first through laboratory testing of current products. Results of this testing show a wide range in uptake capacity across batches of bone char emphasizing the need to modify kiln design in order to produce a more consistent and high quality product. The issue of filter dissemination was addressed through the development of a multi-level, customerfunded business model promoting the availability of filters to Tanzanians of all socioeconomic levels. Central to this model is the recommendation to focus on community managed, institutional sized filters in order to make fluoride free water available to lower income clients and to increase Tanzanian involvement at the management level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.