2 resultados para Courbe de coûts
em Digital Commons - Michigan Tech
Resumo:
Inexpensive, commercial available off-the-shelf (COTS) Global Positioning Receivers (GPS) have typical accuracy of ±3 meters when augmented by the Wide Areas Augmentation System (WAAS). There exist applications that require position measurements between two moving targets. The focus of this work is to explore the viability of using clusters of COTS GPS receivers for relative position measurements to improve their accuracy. An experimental study was performed using two clusters, each with five GPS receivers, with a fixed distance of 4.5 m between the clusters. Although the relative position was fixed, the entire system of ten GPS receivers was on a mobile platform. Data was recorded while moving the system over a rectangular track with a perimeter distance of 7564 m. The data was post processed and yielded approximately 1 meter accuracy for the relative position vector between the two clusters.
Resumo:
In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.