3 resultados para Cost estimation of environmental protection

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.