7 resultados para Cost Allocation Methods

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Algae are considered a promising source of biofuels in the future. However, the environmental impact of algae-based fuel has high variability in previous LCA studies due to lack of accurate data from researchers and industry. The National Alliance for Advanced Biofuels and Bioproducts (NAABB) project was designed to produce and evaluate new technologies that can be implemented by the algal biofuel industry and establish the overall process sustainability. The MTU research group within NAABB worked on the environmental sustainability part of the consortium with UOP-Honeywell and with the University of Arizona (Dr. Paul Blowers). Several life cycle analysis (LCA) models were developed within the GREET Model and SimaPro 7.3 software to quantitatively assess the environment viability and sustainability of algal fuel processes. The baseline GREET Harmonized algae life cycle was expanded and replicated in SimaPro software, important differences in emission factors between GREET/E-Grid database and SimaPro/Ecoinvent database were compared, and adjustments were made to the SimaPro analyses. The results indicated that in most cases SimaPro has a higher emission penalty for inputs of electricity, chemicals, and other materials to the algae biofuels life cycle. A system-wide model of algae life cycle was made starting with preliminary data from the literature, and then progressed to detailed analyses based on inputs from all NAABB research areas, and finally several important scenarios in the algae life cycle were investigated as variations to the baseline scenario. Scenarios include conversion to jet fuel instead of biodiesel or renewable diesel, impacts of infrastructure for algae cultivation, co-product allocation methodology, and different usage of lipid-extracted algae (LEA). The infrastructure impact of algae cultivation is minimal compared to the overall life cycle. However, in the scenarios investigating LEA usage for animal feed instead of internal recycling for energy use and nutrient recovery the results reflect the high potential variability in LCA results. Calculated life cycle GHG values for biofuel production scenarios where LEA is used as animal feed ranged from a 55% reduction to 127% increase compared to the GREET baseline scenario depending on the choice of feed meal. Different allocation methods also affect LCA results significantly. Four novel harvesting technologies and two extraction technologies provided by the NAABB internal report have been analysis using SimaPro LCA software. The results indicated that a combination of acoustic extraction and acoustic harvesting technologies show the most promising result of all combinations to optimize the extraction of algae oil from algae. These scenario evaluations provide important insights for consideration when planning for the future of an algae-based biofuel industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional methods of measuring sound absorption coefficient and sound transmission loss of a material are time consuming. To overcome this limitation, normal incidence sound absorption and transmission loss measurement technique was developed. Unfortunately the equipment required for this task is equally expensive. Hence efforts are taken to develop a cost-effective equipment for measuring normal incidence sound absorption coefficient and transmission loss. An impedance tube capable of measure absorption coefficient and transmission loss is designed and built under a budget of $1500 for educational institutes. A background study is performed to gain knowledge and understanding of the normal incidence measurements technique. Based on the literature review, parameters involved such as tube material, source and microphone properties, sample holders, etc. are discussed in depth. Based on these parameters, design options are generated to meet the cost and functionality targets pre-assigned. After selection of materials and components, an impedance tube is built and tested using three fibrous absorption materials for absorption and a barrier for transmission loss performance. These measured results then compared with those obtained with the help of industry recognized Brüel & Kjær impedance tube. The results show performances are comparable, hence validation the new built tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant cost for foundations is the design and installation of piles when they are required due to poor ground conditions. Not only is it important that piles be designed properly, but also that the installation equipment and total cost be evaluated. To assist in the evaluation of piles a number of methods have been developed. In this research three of these methods were investigated, which were developed by the Federal Highway Administration, the US Corps of Engineers and the American Petroleum Institute (API). The results from these methods were entered into the program GRLWEAPTM to assess the pile drivability and to provide a standard base for comparing the three methods. An additional element of this research was to develop EXCEL spreadsheets to implement these three methods. Currently the Army Corps and API methods do not have publicly available software and must be performed manually, which requires that data is taken off of figures and tables, which can introduce error in the prediction of pile capacities. Following development of the EXCEL spreadsheet, they were validated with both manual calculations and existing data sets to ensure that the data output is correct. To evaluate the three pile capacity methods data was utilized from four project sites from North America. The data included site geotechnical data along with field determined pile capacities. In order to achieve a standard comparison of the data, the pile capacities and geotechnical data from the three methods were entered into GRLWEAPTM. The sites consisted of both cohesive and cohesionless soils; where one site was primarily cohesive, one was primarily cohesionless, and the other two consisted of inter-bedded cohesive and cohesionless soils. Based on this limited set of data the results indicated that the US Corps of Engineers method more closely compared with the field test data, followed by the API method to a lesser degree. The DRIVEN program compared favorably in cohesive soils, but over predicted in cohesionless material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.