1 resultado para Correlation and Regression Analysis
em Digital Commons - Michigan Tech
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (17)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (56)
- CentAUR: Central Archive University of Reading - UK (56)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (138)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (70)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Publishing Network for Geoscientific & Environmental Data (9)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (196)
- Queensland University of Technology - ePrints Archive (145)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (5)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.