5 resultados para Corporation reports.

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Writing center scholarship and practice have approached how issues of identity influence communication but have not fully considered ways of making identity a key feature of writing center research or practice. This dissertation suggests a new way to view identity -- through an experience of "multimembership" or the consideration that each identity is constructed based on the numerous community memberships that make up that identity. Etienne Wenger (1998) proposes that a fully formed identity is ultimately impossible, but it is through the work of reconciling memberships that important individual and community transformations can occur. Since Wenger also argues that reconciliation "is the most significant challenge" for those moving into new communities of practice (or, "engage in a process of collective learning in a shared domain of human endeavor" (4)), yet this challenge often remains tacit, this dissertation examines and makes explicit how this important work is done at two different research sites - a university writing center (the Michigan Tech Multiliteracies Center) and at a multinational corporation (Kimberly-Clark Corporation). Drawing extensively on qualitative ethnographic methods including interview transcriptions, observations, and case studies, as well as work from scholars in writing center studies (Grimm, Denney, Severino), literacy studies (New London Group, Street, Gee), composition (Horner and Trimbur, Canagarajah, Lu), rhetoric (Crowley), and identity studies (Anzaldua, Pratt), I argue that, based on evidence from the two sites, writing centers need to educate tutors to not only take identity into consideration, but to also make individuals' reconciliation work more visible, as it will continue once students and tutors leave the university. Further, as my research at the Michigan Tech Multiliteracies Center and Kimberly-Clark will show, communities can (and should) change their practices in ways that account for reconciliation work as identity, communication, and learning are inextricably bound up with one another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is interest in developing a reliable, sustainable, domestic U.S. biofuels industry. A domestic biofuels industry has the potential to provide economic, environmental, and national security benefits on a local, regional, national, and global level. The Mascoma Corporation plans to develop a cellulosic ethanol facility in Michigan’s eastern Upper Peninsula. The primary feedstock of the plant site would be trees sourced within a 150 mile supply radius. In the eastern Upper Peninsula, this radius encompasses Alger, Chippewa, Delta, Luce, Mackinac, and Schoolcraft counties. In these six counties there are 1,320,500 acres of NIPF (non-industrial private forestlands). These acres account for 40% of the total timberland in these six counties. Thus it is likely that in order for the successful implementation of a cellulosic ethanol facility the support of local NIPF owners will be necessary. This thesis presents research on how eastern Upper Peninsula forest landowners think about and manage their land. It is based on 48 in-depth interviews with these landowners. The goal was to determine how landowner values and beliefs, on a variety of issues including wildlife management, land management, biofuels development, and climate change, are expressed through both their current management decisions, and possibly their future land management decisions. Some of the values articulated by the landowners in this study included biodiversity protection, conservation of healthy game populations, and the production of high-value timber. Understanding the values and beliefs of landowners in the eastern Upper Peninsula of Michigan is critical for successfully developing a sustainable regional woody bioenergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002, motivated largely by the uncontested belief that the private sector would operate more efficiently than the government, the government of Cameroon initiated a major effort to privatize some of Cameroon’s largest, state-run industries. One of the economic sectors affected by this privatization was tea production. In October 2002, the Cameroon Tea Estate (CTE), a privately owned, tea-cultivating organization, bought the Tole Tea Estate from the Cameroon Development Corporation (CDC), a government-owned entity. This led to an increase in the quantity of tea production; however, the government and CTE management appear not to have fully considered the risks of privatization. Using classical rhetorical theory, Richard Weaver’s conception of “god terms” (or “uncontested terms”), and John Ikerd’s ethical approach to risk communication, this study examines risks to which Tole Tea Estate workers were exposed and explores rhetorical strategies that workers employed in expressing their discontent. Sources for this study include online newspapers, which were selected on the basis of their reputation and popularity in Cameroon. Analysis of the data shows that, as a consequence of privatization, Tole Tea Estate workers were exposed to three basic risks: marginalization, unfulfilled promises, and poor working conditions. Workers’ reactions to these risks tended to grow more emotional as management appeared to ignore their demands. The study recommends that respect for labor law, constructive dialogue among stakeholders, and transparency might serve as guiding principles in responding to the politics of privatization in developing countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.