2 resultados para Corporation circulation
em Digital Commons - Michigan Tech
Resumo:
Writing center scholarship and practice have approached how issues of identity influence communication but have not fully considered ways of making identity a key feature of writing center research or practice. This dissertation suggests a new way to view identity -- through an experience of "multimembership" or the consideration that each identity is constructed based on the numerous community memberships that make up that identity. Etienne Wenger (1998) proposes that a fully formed identity is ultimately impossible, but it is through the work of reconciling memberships that important individual and community transformations can occur. Since Wenger also argues that reconciliation "is the most significant challenge" for those moving into new communities of practice (or, "engage in a process of collective learning in a shared domain of human endeavor" (4)), yet this challenge often remains tacit, this dissertation examines and makes explicit how this important work is done at two different research sites - a university writing center (the Michigan Tech Multiliteracies Center) and at a multinational corporation (Kimberly-Clark Corporation). Drawing extensively on qualitative ethnographic methods including interview transcriptions, observations, and case studies, as well as work from scholars in writing center studies (Grimm, Denney, Severino), literacy studies (New London Group, Street, Gee), composition (Horner and Trimbur, Canagarajah, Lu), rhetoric (Crowley), and identity studies (Anzaldua, Pratt), I argue that, based on evidence from the two sites, writing centers need to educate tutors to not only take identity into consideration, but to also make individuals' reconciliation work more visible, as it will continue once students and tutors leave the university. Further, as my research at the Michigan Tech Multiliteracies Center and Kimberly-Clark will show, communities can (and should) change their practices in ways that account for reconciliation work as identity, communication, and learning are inextricably bound up with one another.
Resumo:
Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.