2 resultados para Coordinate Transformation
em Digital Commons - Michigan Tech
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
This dissertation explores the viability of invitational rhetoric as a mode of advocacy for sustainable energy use in the residential built environment. The theoretical foundations for this study join ecofeminist concepts and commitments with the conditions and resources of invitational rhetoric, developing in particular the rhetorical potency of the concepts of re-sourcement and enfoldment. The methodological approach is autoethnography using narrative reflection and journaling, both adapted to and developed within the autoethnographic project. Through narrative reflection, the author explores her lived experiences in advocating for energy-responsible residential construction in the Keweenaw Peninsula of Michigan. The analysis reveals the opportunities for cooperative, collaborative advocacy and the struggle against traditional conventions of persuasive advocacy, particularly the centrality of the rhetor. The author also conducted two field trips to India, primarily the state of Kerala. Drawing on autoethnographic journaling, the analysis highlights the importance of sensory relations in lived advocacy and the resonance of everyday Indian culture to invitational principles. Based on field research, the dissertation proposes autoethnography as a critical development in encouraging invitational rhetoric as an alternative mode of effecting change. The invitational force of autoethnography is evidenced in portraying the material advocacy of the built environment itself, specifically the sensual experience of material arrangements and ambience, as well as revealing the corporeality of advocacy, that is, the body as the site of invitational engagement, emotional encounter, and sensory experience. This study concludes that vulnerability of self in autoethnographic work and the vulnerability of rhetoric as invitational constitute the basis for transformation. The dissertation confirms the potential of an ecofeminist invitational advocacy conveyed autoethnographically for transforming perceptions and use of energy in a smaller-scale residential environment appropriate for culture, climate, and ultimately part of the challenge of sustaining life on this planet.