1 resultado para Consistent and asymptotically normal estimators
em Digital Commons - Michigan Tech
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (21)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (14)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (62)
- Boston University Digital Common (2)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (32)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (19)
- Indian Institute of Science - Bangalore - Índia (42)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (19)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (16)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (78)
- Queensland University of Technology - ePrints Archive (97)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (154)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scientific Open-access Literature Archive and Repository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (9)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (19)
- University of Connecticut - USA (3)
- University of Michigan (3)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
This report discusses the calculation of analytic second-order bias techniques for the maximum likelihood estimates (for short, MLEs) of the unknown parameters of the distribution in quality and reliability analysis. It is well-known that the MLEs are widely used to estimate the unknown parameters of the probability distributions due to their various desirable properties; for example, the MLEs are asymptotically unbiased, consistent, and asymptotically normal. However, many of these properties depend on an extremely large sample sizes. Those properties, such as unbiasedness, may not be valid for small or even moderate sample sizes, which are more practical in real data applications. Therefore, some bias-corrected techniques for the MLEs are desired in practice, especially when the sample size is small. Two commonly used popular techniques to reduce the bias of the MLEs, are ‘preventive’ and ‘corrective’ approaches. They both can reduce the bias of the MLEs to order O(n−2), whereas the ‘preventive’ approach does not have an explicit closed form expression. Consequently, we mainly focus on the ‘corrective’ approach in this report. To illustrate the importance of the bias-correction in practice, we apply the bias-corrected method to two popular lifetime distributions: the inverse Lindley distribution and the weighted Lindley distribution. Numerical studies based on the two distributions show that the considered bias-corrected technique is highly recommended over other commonly used estimators without bias-correction. Therefore, special attention should be paid when we estimate the unknown parameters of the probability distributions under the scenario in which the sample size is small or moderate.